Do you want to publish a course? Click here

On the global and local magnetic fields in flare stars. Study of YZ CMi and OT Ser

100   0   0.0 ( 0 )
 Added by Jerzy Madej
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Global magnetic fields of flare stars can evolve rapidly, in time scale of hundreds or dozens of days. We believe, that such changes result from rapid superposition of local magnetic fields generated by differential rotation of those stars. We discuss possible mechanisms of generation and dissipation of local and global magnetic fields in sample flare stars OT Ser and YZ CMi. We propose mechanism of magnetic braking of these stars, in which differential rotation generates local magnetic fields, and eventually energy accumulated in local fields is radiated away by flares. We obtained estimates of the rotational energy and the energy of the global magnetic field of OT Ser and YZ CMi. We also show that the energy of the local magnetic fields dissipated during superflare of YZ CMi on 9 February 2008 (UT 20:22:00) did not influence the global magnetic field of this star.



rate research

Read More

136 - Adam F. Kowalski 2011
The white light during M dwarf flares has long been known to exhibit the broadband shape of a T~10,000 K blackbody, and the white light in solar flares is thought to arise primarily from Hydrogen recombination. Yet, a current lack of broad wavelength coverage solar-flare spectra in the optical/near-UV prohibits a direct comparison of the continuum properties to determine if they are indeed so different. New spectroscopic observations of a secondary flare during the decay of a megaflare on the dM4.5e star YZ CMi have revealed multiple components in the white-light continuum of stellar flares, including both a blackbody-like spectrum and a hydrogen recombination spectrum. One of the most surprising findings is that these two components are anti-correlated in their temporal evolution. We combine initial phenomenological modeling of the continuum components with spectra from radiative-hydrodynamic models to show that continuum veiling gives rise to the measured anti-correlation. This modeling allows us to use the components inferred properties to predict how a similar spatially resolved, multiple-component white-light continuum might appear using analogies to several solar flare phenomena. We also compare the properties of the optical stellar flare white light to Ellerman bombs on the Sun.
We analyze the light curve of 1740 flare stars to study the relationship between the magnetic feature characteristics and the identified flare activity. Coverage and stability of magnetic features are inspired by rotational modulation of light curve variations and flare activity of stars are obtained using our automated flare detection algorithm. The results show that (i) Flare time occupation ratio (or flare frequency) and total power of flares increase by increasing relative magnetic feature coverage and contrast in F-M type stars (ii) Magnetic feature stability is highly correlated with the coverage and the contrast of the magnetic structures as this is the case for the Sun (iii) Stability, coverage and contrast of the magnetic features, time occupation ratio and total power of flares increases for G, K and M-type stars by decreasing Rossby number due to the excess of produced magnetic field from dynamo procedure until reaching to saturation level.
Magnetic flux ropes (MFRs) are thought to be the central structure of solar eruptions, and their ideal MHD instabilities can trigger the eruption. Here we performed a study of all the MFR configurations that lead to major solar flares, either eruptive or confined, from 2011 to 2017 near the solar disk center. The coronal magnetic field is reconstructed from observed magnetograms, and based on magnetic twist distribution, we identified the MFR, which is defined as a coherent group of magnetic field lines winding an axis with more than one turn. It is found that 90% of the events possess pre-flare MFRs, and their three-dimensional structures are much more complex in details than theoretical MFR models. We further constructed a diagram based on two parameters, the magnetic twist number which controls the kink instability (KI), and the decay index which controls the torus instability (TI). It clearly shows lower limits for TI and KI thresholds, which are $n_{rm crit} = 1.3$ and $|T_w|_{rm crit} = 2$, respectively, as all the events above $n_{rm crit}$ and nearly 90% of the events above $|T_w|_{rm crit}$ erupted. Furthermore, by such criterion, over 70% of the events can be discriminated between eruptive and confined flares, and KI seems to play a nearly equally important role as TI in discriminating between the two types of flare. There are more than half of events with both parameters below the lower limits, and 29% are eruptive. These events might be triggered by magnetic reconnection rather than MHD instabilities.
Are the kG-strength magnetic fields observed in young stars a fossil field left over from their formation or are they generated by a dynamo? We use radiation non-ideal magnetohydrodynamics simulations of the gravitational collapse of a rotating, magnetized molecular cloud core over 17 orders of magnitude in density, past the first hydrostatic core to the formation of the second, stellar core, to examine the fossil field hypothesis. Whereas in previous work we found that magnetic fields in excess of 10 kG can be implanted in stars at birth, this assumed ideal magnetohydrodynamics (MHD), i.e. that the gas is coupled to the magnetic field. Here we present non-ideal MHD calculations which include Ohmic resistivity, ambipolar diffusion and the Hall effect. For realistic cosmic ray ionization rates, we find that magnetic field strengths of $lesssim$ kG are implanted in the stellar core at birth, ruling out a strong fossil field. While these results remain sensitive to resolution, they cautiously provide evidence against a fossil field origin for stellar magnetic fields, suggesting instead that magnetic fields in stars originate in a dynamo process.
141 - S.-W. Chang , Y.-I. Byun , 2015
Based on one-month long MMT time-series observations of the open cluster M37, we monitored light variations of nearly 2500 red dwarfs and successfully identified 420 flare events from 312 cluster M dwarf stars. For each flare light curve, we derived observational and physical parameters, such as flare shape, peak amplitude, duration, energy, and peak luminosity. We show that cool stars produce serendipitous flares energetic enough to be observed in the $r$-band, and their temporal and peak characteristics are almost the same as those in traditional $U$-band observations. We also found many large-amplitude flares with inferred $Delta u > 6$ mag in the cluster sample which had been rarely reported in previous ground-based observations. Following the ergodic hypothesis, we investigate in detail statistical properties of flare parameters over a range of energy ($E_{r}$ $simeq$ $10^{31}-10^{34}$ erg). As expected, there are no statistical differences in the distributions of flare timescales, energies, and frequencies among stars of the same age and mass group. We note that our sample tend to have longer rise and decay timescales compared to those seen in field flare stars of the same spectral type and be more energetic. Flare frequency distributions follow power-law distributions with slopes $beta sim0.62-1.21$ for all flare stars and $beta sim0.52-0.97$ for stars with membership information ($P_{mem} geq 0.2$). These are in general agreement with previous works on flare statistics of young open clusters and nearby field stars. Our results give further support to the classical age-activity relations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا