Do you want to publish a course? Click here

Once in a blue moon: detection of bluing during debris transits in the white dwarf WD1145+017

54   0   0.0 ( 0 )
 Added by Na'ama Hallakoun
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The first transiting planetesimal orbiting a white dwarf was recently detected in K2 data of WD1145+017 and has been followed up intensively. The multiple, long, and variable transits suggest the transiting objects are dust clouds, probably produced by a disintegrating asteroid. In addition, the system contains circumstellar gas, evident by broad absorption lines, mostly in the u-band, and a dust disc, indicated by an infrared excess. Here we present the first detection of a change in colour of WD1145+017 during transits, using simultaneous multi-band fast-photometry ULTRACAM measurements over the ugri-bands. The observations reveal what appears to be bluing during transits; transits are deeper in the redder bands, with a u-r colour difference of up to ~-0.05 mag. We explore various possible explanations for the bluing. Spectral photometry obtained by integrating over bandpasses in the spectroscopic data in- and out-of-transit, compared to the photometric data, shows that the observed colour difference is most likely the result of reduced circumstellar absorption in the spectrum during transits. This indicates that the transiting objects and the gas share the same line-of-sight, and that the gas covers the white dwarf only partially, as would be expected if the gas, the transiting debris, and the dust emitting the infrared excess, are part of the same general disc structure (although possibly at different radii). In addition, we present the results of a week-long monitoring campaign of the system.



rate research

Read More

We present follow-up photometry and spectroscopy of ZTF J0328$-$1219 strengthening its status as a white dwarf exhibiting transiting planetary debris. Using TESS and Zwicky Transient Facility photometry, along with follow-up high speed photometry from various observatories, we find evidence for two significant periods of variability at 9.937 and 11.2 hr. We interpret these as most likely the orbital periods of different debris clumps. Changes in the detailed dip structures within the light curves are observed on nightly, weekly, and monthly timescales, reminiscent of the dynamic behavior observed in the first white dwarf discovered to harbor a disintegrating asteroid, WD 1145+017. We fit previously published spectroscopy along with broadband photometry to obtain new atmospheric parameters for the white dwarf, with $M_{star} = 0.731 pm 0.023,M_{odot}$, $T_{mathrm{eff}} = 7630 pm 140,$K, and $mathrm{[Ca/He]}=-9.55pm0.12$. With new high-resolution spectroscopy, we detect prominent and narrow Na D absorption features likely of circumstellar origin, with velocities $21.4pm1.0$ km s$^{-1}$ blue-shifted relative to atmospheric lines. We attribute the periodically modulated photometric signal to dusty effluents from small orbiting bodies such as asteroids or comets, but are unable to identify the most likely material that is being sublimated, or otherwise ejected, as the environmental temperatures range from roughly 400K to 600K.
White dwarf WD 1145+017 is orbited by several clouds of dust, possibly emanating from actively disintegrating bodies. These dust clouds reveal themselves through deep, broad, and evolving transits in the stars light curve. Here, we report two epochs of multi-wavelength photometric observations of WD 1145+017, including several filters in the optical, K$_mathrm{s}$ and 4.5 $mu$m bands in 2016 and 2017. The observed transit depths are different at these wavelengths. However, after correcting for excess dust emission at K$_mathrm{s}$ and 4.5 $mu$m, we find the transit depths for the white dwarf itself are the same at all wavelengths, at least to within the observational uncertainties of $sim$5%-10%. From this surprising result, and under the assumption of low optical depth dust clouds, we conclude that there is a deficit of small particles (with radii $s lesssim$ 1.5 $mu$m) in the transiting material. We propose a model wherein only large particles can survive the high equilibrium temperature environment corresponding to 4.5 hr orbital periods around WD 1145+017, while small particles sublimate rapidly. In addition, we evaluate dust models that are permitted by our measurements of infrared emission.
WD 1145+017 is a unique white dwarf system that has a heavily polluted atmosphere, an infrared excess from a dust disk, numerous broad absorption lines from circumstellar gas, and changing transit features, likely from fragments of an actively disintegrating asteroid. Here, we present results from a large photometric and spectroscopic campaign with Hubble, Keck , VLT, Spitzer, and many other smaller telescopes from 2015 to 2018. Somewhat surprisingly, but consistent with previous observations in the u band, the UV transit depths are always shallower than those in the optical. We develop a model that can quantitatively explain the observed bluing and the main findings are: I. the transiting objects, circumstellar gas, and white dwarf are all aligned along our line of sight; II. the transiting object is blocking a larger fraction of the circumstellar gas than of the white dwarf itself. Because most circumstellar lines are concentrated in the UV, the UV flux appears to be less blocked compared to the optical during a transit, leading to a shallower UV transit. This scenario is further supported by the strong anti-correlation between optical transit depth and circumstellar line strength. We have yet to detect any wavelength-dependent transits caused by the transiting material around WD 1145+017.
WD 0145+234 is a white dwarf that is accreting metals from a circumstellar disc of planetary material. It has exhibited a substantial and sustained increase in 3-5 micron flux since 2018. Follow-up Spitzer photometry reveals that emission from the disc had begun to decrease by late 2019. Stochastic brightening events superimposed on the decline in brightness suggest the liberation of dust during collisional evolution of the circumstellar solids. A simple model is used to show that the observations are indeed consistent with ongoing collisions. Rare emission lines from circumstellar gas have been detected at this system, supporting the emerging picture of white dwarf debris discs as sites of collisional gas and dust production.
We obtained high-speed photometry of the disintegrating planetesimals orbiting the white dwarf WD1145+017, spanning a period of four weeks. The light curves show a dramatic evolution of the system since the first observations obtained about seven months ago. Multiple transit events are detected in every light curve, which have varying durations(~3-12min) and depths (~10-60%). The time-averaged extinction is ~11%, much higher than at the time of the Kepler observations. The shortest-duration transits require that the occulting cloud of debris has a few times the size of the white dwarf, longer events are often resolved into the superposition of several individual transits. The transits evolve on time scales of days, both in shape and in depth, with most of them gradually appearing and disappearing over the course of the observing campaign. Several transits can be tracked across multiple nights, all of them recur on periods of ~4.49h, indicating multiple planetary debris fragments on nearly identical orbits. Identifying the specific origin of these bodies within this planetary system, and the evolution leading to their current orbits remains a challenging problem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا