We report a high-resolution laser-based angle-resolved photoemission spectroscopy (laser-ARPES) study of single crystals of FeSe, focusing on the temperature-dependence of the hole-like bands around the ${rm Gamma}$ point. As the system cools through the tetragonal-orthorhombic nematic structural transition at 90~K, the splitting of the $d_{xz}$/$d_{yz}$ bands is observed to increase by a magnitude of 13 meV. Moreover, the onset of a $sim$10 meV downward shift of the $d_{xy}$ band is also at 90~K. These measurements provide clarity on the nature, magnitude and temperature-dependence of the band shifts at the ${rm Gamma}$ point in the nematic phase of FeSe.