Do you want to publish a course? Click here

Passivity-Based Control of Human-Robotic Networks with Inter-Robot Communication Delays and Experimental Verification

56   0   0.0 ( 0 )
 Added by Junya Yamauchi Mr.
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In this paper, we present experimental studies on a cooperative control system for human-robotic networks with inter-robot communication delays. We first design a cooperative controller to be implemented on each robot so that their motion are synchronized to a reference motion desired by a human operator, and then point out that each robot motion ensures passivity. Inter-robot communication channels are then designed via so-called scattering transformation which is a technique to passify the delayed channel. The resulting robotic network is then connected with human operator based on passivity theory. In order to demonstrate the present control architecture, we build an experimental testbed consisting of multiple robots and a tablet. In particular, we analyze the effects of the communication delays on the human operators behavior.



rate research

Read More

197 - Hanlei Wang 2015
This paper investigates the visual servoing problem for robotic systems with uncertain kinematic, dynamic, and camera parameters. We first present the passivity properties associated with the overall kinematics of the system, and then propose two passivity-based adaptive control schemes to resolve the visual tracking problem. One scheme employs the adaptive inverse-Jacobian-like feedback, and the other employs the adaptive transpose Jacobian feedback. With the Lyapunov analysis approach, it is shown that under either of the proposed control schemes, the image-space tracking errors converge to zero without relying on the assumption of the invertibility of the estimated depth. Numerical simulations are performed to show the tracking performance of the proposed adaptive controllers.
This paper considers the distributed sampled-data control problem of a group of mobile robots connected via distance-induced proximity networks. A dwell time is assumed in order to avoid chattering in the neighbor relations that may be caused by abrupt changes of positions when updating information from neighbors. Distributed sampled-data control laws are designed based on nearest neighbour rules, which in conjunction with continuous-time dynamics results in hybrid closed-loop systems. For uniformly and independently initial states, a sufficient condition is provided to guarantee synchronization for the system without leaders. In order to steer all robots to move with the desired orientation and speed, we then introduce a number of leaders into the system, and quantitatively establish the proportion of leaders needed to track either constant or time-varying signals. All these conditions depend only on the neighborhood radius, the maximum initial moving speed and the dwell time, without assuming a prior properties of the neighbor graphs as are used in most of the existing literature.
169 - Hanlei Wang 2014
In this paper, we investigate the adaptive control problem for robot manipulators with both the uncertain kinematics and dynamics. We propose two adaptive control schemes to realize the objective of task-space trajectory tracking irrespective of the uncertain kinematics and dynamics. The proposed controllers have the desirable separation property, and we also show that the first adaptive controller with appropriate modifications can yield improved performance, without the expense of conservative gain choice. The performance of the proposed controllers is shown by numerical simulations.
When cooperating with a human, a robot should not only care about its environment and task but also develop an understanding of the partners reasoning. To support its human partner in complex tasks, the robot can share information that it knows. However simply communicating everything will annoy and distract humans since they might already be aware of and not all information is relevant in the current situation. The questions when and what type of information the human needs, are addressed through the concept of Theory of Mind based Communication which selects information sharing actions based on evaluation of relevance and an estimation of human beliefs. We integrate this into a communication assistant to support humans in a cooperative setting and evaluate performance benefits. We designed a human robot Sushi making task that is challenging for the human and generates different situations where humans are unaware and communication could be beneficial. We evaluate the influence of the human centric communication concept on performance with a user study. Compared to the condition without information exchange, assisted participants can recover from unawareness much earlier. The approach respects the costs of communication and balances interruptions better than other approaches. By providing information adapted to specific situations, the robot does not instruct but enable the human to make good decision.
This paper identifies a property of delay-robustness in distributed supervisory control of discrete-event systems (DES) with communication delays. In previous work a distributed supervisory control problem has been investigated on the assumption that inter-agent communications take place with negligible delay. From an applications viewpoint it is desirable to relax this constraint and identify communicating distributed controllers which are delay-robust, namely logically equivalent to their delay-free counterparts. For this we introduce inter-agent channels modeled as 2-state automata, compute the overall system behavior, and present an effective computational test for delay-robustness. From the test it typically results that the given delay-free distributed control is delay-robust with respect to certain communicated events, but not for all, thus distinguishing events which are not delay-critical from those that are. The approach is illustrated by a workcell model with three communicating agents.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا