No Arabic abstract
Context. The SAO 206462 (HD 135344B) disk is one of the few known transitional disks showing asymmetric features in scattered light and thermal emission. Near-infrared scattered-light images revealed two bright outer spiral arms and an inner cavity depleted in dust. Giant protoplanets have been proposed to account for the disk morphology. Aims. We aim to search for giant planets responsible for the disk features and, in the case of non-detection, to constrain recent planet predictions using the data detection limits. Methods. We obtained new high-contrast and high-resolution total intensity images of the target spanning the Y to the K bands (0.95-2.3 mic) using the VLT/SPHERE near-infrared camera and integral field spectrometer. Results. The spiral arms and the outer cavity edge are revealed at high resolutions and sensitivities without the need for image post-processing techniques, which introduce photometric biases. We do not detect any close-in companions. For the derivation of the detection limits on putative giant planets embedded in the disk, we show that the knowledge of the disk aspect ratio and viscosity is critical for the estimation of the attenuation of a planet signal by the protoplanetary dust because of the gaps that these putative planets may open. Given assumptions on these parameters, the mass limits can vary from ~2-5 to ~4-7 Jupiter masses at separations beyond the disk spiral arms. The SPHERE detection limits are more stringent than those derived from archival NaCo/L data and provide new constraints on a few recent predictions of massive planets (4-15 MJ) based on the spiral density wave theory. The SPHERE and ALMA data do not favor the hypotheses on massive giant planets in the outer disk (beyond 0.6). There could still be low-mass planets in the outer disk and/or planets inside the cavity.
Spiral arms have been observed in more than a dozen protoplanetary disks, yet the origin of nearly all systems is under debate. Multi-epoch monitoring of spiral arm morphology offers a dynamical way in distinguishing two leading arm formation mechanisms: companion-driven, and gravitational instability induction, since these mechanisms predict distinct motion patterns. By analyzing multi-epoch J-band observations of the SAO 206462 system using the SPHERE instrument on the Very Large Telescope (VLT) in 2015 and 2016, we measure the pattern motion for its two prominent spiral arms in polarized light. On one hand, if both arms are comoving, they can be driven by a planet at $86_{-13}^{+18}$ au on a circular orbit, with gravitational instability motion ruled out. On the other hand, they can be driven by two planets at $120_{-30}^{+30}$ au and $49_{-5}^{+6}$ au, offering a tentative evidence (3.0$sigma$) that the two spirals are moving independently. The independent arm motion is possibly supported by our analysis of a re-reduction of archival observations using the NICMOS instrument onboard the Hubble Space Telescope (HST) in 1998 and 2005, yet artifacts including shadows can manifest spurious arm motion in HST observations. We expect future re-observations to better constrain the motion mechanism for the SAO 206462 spiral arms.
We studied the well known circumstellar disk around the Herbig Ae/Be star HD 97048 with high angular resolution to reveal undetected structures in the disk, which may be indicative of disk evolutionary processes such as planet formation. We used the IRDIS near-IR subsystem of the extreme adaptive optics imager SPHERE at the ESO/VLT to study the scattered light from the circumstellar disk via high resolution polarimetry and angular differential imaging. We imaged the disk in unprecedented detail and revealed four ring-like brightness enhancements and corresponding gaps in the scattered light from the disk surface with radii between 39 au and 341 au. We derived the inclination and position angle as well as the height of the scattering surface of the disk from our observational data. We found that the surface height profile can be described by a single power law up to a separation ~270 au. Using the surface height profile we measured the scattering phase function of the disk and found that it is well consistent with theoretical models of compact dust aggregates. We discuss the origin of the detected features and find that low mass (< 1 M_Jup) nascent planets are a possible explanation.
Giant, wide-separation planets often lie in the gap between multiple, distinct rings of circumstellar debris: this is the case for the HR,8799 and HD,95086 systems, and even the solar system where the Asteroid and Kuiper belts enclose the four gas and ice giants. In the case that a debris disk, inferred from an infrared excess in the SED, is best modelled as two distinct temperatures, we infer the presence of two spatially separated rings of debris. Giant planets may well exist between these two belts of debris, and indeed could be responsible for the formation of the gap between these belts. We observe 24 such two-belt systems using the VLT/SPHERE high contrast imager, and interpret our results under the assumption that the gap is indeed formed by one or more giant planets. A theoretical minimum mass for each planet can then be calculated, based on the predicted dynamical timescales to clear debris. The typical dynamical lower limit is $sim$0.2$M_J$ in this work, and in some cases exceeds 1$M_J$. Direct imaging data, meanwhile, is typically sensitive to planets down to $sim$3.6$M_J$ at 1, and 1.7$M_J$ in the best case. Together, these two limits tightly constrain the possible planetary systems present around each target, many of which will be detectable with the next generation of high-contrast imagers.
The protoplanetary disk around the F-type star HD 135344B (SAO 206462) is in a transition stage and shows many intriguing structures both in scattered light and thermal (sub-)millimeter emission which are possibly related to planet formation processes. We study the morphology and surface brightness of the disk in scattered light to gain insight into the innermost disk regions, the formation of protoplanets, planet-disk interactions traced in the surface and midplane layers, and the dust grain properties of the disk surface. We have carried out high-contrast polarimetric differential imaging (PDI) observations with VLT/SPHERE and obtained polarized scattered light images with ZIMPOL in R- and I-band and with IRDIS in Y- and J-band. The scattered light images reveal with unprecedented angular resolution and sensitivity the spiral arms as well as the 25 au cavity of the disk. Multiple shadow features are discovered on the outer disk with one shadow only being present during the second observation epoch. A positive surface brightness gradient is observed in the stellar irradiation corrected images in southwest direction possibly due to an azimuthally asymmetric perturbation of the temperature and/or surface density by the passing spiral arms. The disk integrated polarized flux, normalized to the stellar flux, shows a positive trend towards longer wavelengths which we attribute to large aggregate dust grains in the disk surface. Part of the the non-azimuthal polarization signal in the Uphi image of the J-band observation could be the result of multiple scattering in the disk. The detected shadow features and their possible variability have the potential to provide insight into the structure of and processes occurring in the innermost disk regions.
We present high-resolution, H-band, imaging observations, collected with Subaru/HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 135344B). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r~46AU, our observations reveal the presence of scattered light components as close as 0.2 (~28AU) from the star. Moreover, we have discovered two small-scale spiral structures lying within 0.5 (~70AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h~0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes, independently from sub-mm observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations.