No Arabic abstract
The nearby ultra-luminous infrared galaxy (ULIRG) Arp 220 is an excellent laboratory for studies of extreme astrophysical environments. For 20 years, Very Long Baseline Interferometry (VLBI) has been used to monitor a population of compact sources thought to be supernovae (SNe), supernova remnants (SNRs) and possibly active galactic nuclei (AGNs). Using new and archival VLBI data spanning 20 years, we obtain 23 high-resolution radio images of Arp 220 at wavelengths from 18 cm to 2 cm. From model-fitting to the images we obtain estimates of flux densities and sizes of all detected sources. We detect radio continuum emission from 97 compact sources and present flux densities and sizes for all analysed observation epochs. We find evidence for a LD-relation within Arp 220, with larger sources being less luminous. We find a compact source LF $n(L)propto L^beta$ with $beta=-2.19pm0.15$, similar to SNRs in normal galaxies. Based on simulations we argue that there are many relatively large and weak sources below our detection threshold. The observations can be explained by a mixed population of SNe and SNRs, where the former expand in a dense circumstellar medium (CSM) and the latter interact with the surrounding interstellar medium (ISM). Nine sources are likely luminous, type IIn SNe. This number of luminous SNe correspond to few percent of the total number of SNe in Arp 220 which is consistent with a total SN-rate of 4 yr$^{-1}$ as inferred from the total radio emission given a normal stellar initial mass function (IMF). Based on the fitted luminosity function, we argue that emission from all compact sources, also below our detection threshold, make up at most 20% of the total radio emission at GHz frequencies.
We present our new deep optical imaging and long-slit spectroscopy for Arp 220 that is the archetypical ULIRG in the local universe. Our sensitive Ha imaging has newly revealed large-scale, Ha absorption, i.e., post-starburst regions in this merger; one is found in the eastern superbubble and the other is in the two tidal tails that are clearly reveled in our deep optical imaging. The size of Ha absorption region in the eastern bubble is 5 kpc x 7.5 kpc and the observed Ha equivalent widths are ~2 A +- 0.2 A. The sizes of the northern and southern Ha-absorption tidal tails are ~5 kpc x 10 kpc and ~6 kpc x 20 kpc, respectively. The observed Ha equivalent widths range from 4 A to 7 A. In order to explain the presence of the two post-starburst tails, we suggest a possible multiple-merger scenario for Arp 220 in which two post-starburst disk-like structures merged into one, and then caused the two tails. This favors that Arp 220 is a multiple merging system composed of four or more galaxies, arising from a compact group of galaxies. Taking our new results into account, we discuss a star formation history in the last 1 Gyr in Arp 220.
The cores of Arp 220, the closest ultra-luminous infrared starburst galaxy, provide an opportunity to study interactions of cosmic rays under extreme conditions. In this paper, we model the populations of cosmic rays produced by supernovae in the central molecular zones of both starburst nuclei. We find that ~65 - 100% of cosmic rays are absorbed in these regions due to their huge molecular gas contents, and thus, the nuclei of Arp 220 nearly complete proton calorimeters. As the cosmic ray protons collide with the interstellar medium, they produce secondary electrons that are also contained within the system and radiate synchrotron emission. Using results from chi-squared tests between the model and the observed radio spectral energy distribution, we predict the emergent gamma-ray and high-energy neutrino spectra and find the magnetic field to be at milligauss levels. Because of the extremely intense far-infrared radiation fields, the gamma-ray spectrum steepens significantly at TeV energies due to gamma-gamma absorption.
We present a study of the young population in the starburst galaxy NGC 253. In particular, we focused our attention on searching young star groups, obtaining their main properties and studying their hierarchical organization. For this task, we used multiband images and their corresponding photometric data obtained with the Advanced Camera for Surveys of the Hubble Space Telescope (ACS/HST). We have first derived the absorption affecting the different regions of the galaxy. Then, we applied an automatic and objective searching method over the corrected data in order to detect young star groups. We complemented this result with the construction of the stellar density map for the blue young population. A statistical procedure to decontaminate the photometric diagrams from field stars was applied over the detected groups and we estimated their fundamental parameters. As a result, we built a catalog of 875 new identified young groups with their main characteristics, including coordinates, sizes, estimated number of members, stellar densities, luminosity function (LF) slopes and galactocentric distances. We observed these groups delineate different structures of the galaxy, and they are the last step in the hierarchical way in which the young population is organized. From their size distribution, we found they have typical radius of $sim 40 - 50$ pc. These values are consistent with those ones found in others nearby galaxies. We estimated a mean value of the LF slope of 0.21 and an average density of 0.0006 stars/pc$^3$ for the identified young groups taking into account stars earlier than B6.
We present the first spatially and spectrally resolved image of the molecular outflow in the western nucleus of Arp,220. The outflow, seen in HCN~(1--0) by ALMA, is compact and collimated, with extension $lesssim$ 120,pc. Bipolar morphology emerges along the minor axis of the disk, with redshifted and blueshifted components reaching maximum inclination-corrected velocity of $sim,pm$,840,km,s$^{-1}$. The outflow is also seen in CO and continuum emission, the latter implying that it carries significant dust. We estimate a total mass in the outflow of $geqslant$,10$^{6}$,M$_{odot}$, a dynamical time of $sim$,10$^{5}$,yr, and mass outflow rates of $geqslant55$,M$_{odot}$,yr$^{-1}$ and $geqslant,15$,M$_{odot}$,yr$^{-1}$ for the northern and southern lobes, respectively. Possible driving mechanisms include supernovae energy and momentum transfer, radiation pressure feedback, and a central AGN. The latter could explain the collimated morphology of the HCN outflow, however we need more complex theoretical models, including contribution from supernovae and AGN, to pinpoint the driving mechanism of this outflow.
We present observations of radio recombination lines from the starburst galaxy Arp 220 at 1.4, 8.1, 84, 96 and 207 GHz (sensitive upper limit for the 1.4 GHz line and firm detections at the other frequencies), and the radio continuum spectrum between 330 MHz and 207 GHz. We show that a model with three components of ionized gas with different densities and area covering factors can consistently explain both RRL and continuum data. The total mass of ionized gas in the three components is 3 x 10^7 M_sun requiring 3 x 10^5 O5 stars with a total Lyman continuum production rate (NLyc) of 1.3 x 10^{55} photons /s. These values imply a dust extinction A_V ~ 45 magnitudes and an SFR of ~240 M_sun/yr. The NLyc of ~3% associated with the high density HII regions implies similar SFR at recent epochs. The data is also consistent with multiple starbursts of very high SFR and short durations. The derived value of 24 for the IR-excess favours a starburst rather than an AGN as the origin of the observed FIR luminosity. (the abstract has been abridged)