Symbolic dynamics: entropy = dimension = complexity


Abstract in English

Let $G$ be the group $mathbb{Z}^d$ or the monoid $mathbb{N}^d$ where $d$ is a positive integer. Let $X$ be a subshift over $G$, i.e., a closed and shift-invariant subset of $A^G$ where $A$ is a finite alphabet. We prove that the topological entropy of $X$ is equal to the Hausdorff dimension of $X$ and has a sharp characterization in terms of the Kolmogorov complexity of finite pieces of the orbits of $X$. In the version of this paper that has been published in Theory of Computing Systems, the proof of Lemma 4.3 contains a confusing typographical error. This version of the paper corrects that error.

Download