Do you want to publish a course? Click here

Beyond the perturbative description of the nonlinear optical response of low-index materials

86   0   0.0 ( 0 )
 Added by Orad Reshef
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that standard approximations in nonlinear optics are violated for situations involving a small value of the linear refractive index. Consequently, the conventional equation for the intensity-dependent refractive index, $n(I) = n_0 + n_2 I$, becomes inapplicable in epsilon-near-zero and low-index media, even in the presence of only third-order effects. For the particular case of indium tin oxide, we find that the $chi^{(3)}$, $chi^{(5)}$ and $chi^{(7)}$ contributions to refraction eclipse the linear term; thus, the nonlinear response can no longer be interpreted as a perturbation in these materials. Although the response is non-perturbative, we find no evidence that the power series expansion of the material polarization diverges.



rate research

Read More

Materials with a zero refractive index support electromagnetic modes that exhibit stationary phase profiles. While such materials have been realized across the visible and near-infrared spectral range, radiative and dissipative optical losses have hindered their development. We reduce losses in zero-index, on-chip photonic crystals by introducing high-Q resonances via resonance-trapped and symmetry-protected states. Using these approaches, we experimentally obtain quality factors of 2.6*10^3 and 7.8*10^3 at near-infrared wavelengths, corresponding to an order-of-magnitude reduction in propagation loss over previous designs. Our work presents a viable approach to fabricate zero-index on-chip nanophotonic devices with low-loss.
Increasing the refractive index available for optical and nanophotonic systems opens new vistas for design: for applications ranging from broadband metalenses to ultrathin photovoltaics to high-quality-factor resonators, higher index directly leads to better devices with greater functionality. Although standard transparent materials have been limited to refractive indices smaller than 3 in the visible, recent metamaterials designs have achieved refractive indices above 5, accompanied by high losses, and near the phase transition of a ferroelectric perovskite a broadband index above 26 has been claimed. In this work, we derive fundamental limits to the refractive index of any material, given only the underlying electron density and either the maximum allowable dispersion or the minimum bandwidth of interest. The Kramers--Kronig relations provide a representation for any passive (and thereby causal) material, and a well-known sum rule constrains the possible distribution of oscillator strengths. In the realm of small to modest dispersion, our bounds are closely approached and not surpassed by a wide range of natural materials, showing that nature has already nearly reached a Pareto frontier for refractive index and dispersion. Surprisingly, our bound shows a cube-root dependence on electron density, meaning that a refractive index of 26 over all visible frequencies is likely impossible. Conversely, for narrow-bandwidth applications, nature does not provide the highly dispersive, high-index materials that our bounds suggest should be possible. We use the theory of composites to identify metal-based metamaterials that can exhibit small losses and sizeable increases in refractive index over the current best materials.
The nonlinear optical response of materials to exciting light is enhanced by resonances between the incident laser frequencies and the energy levels of the excited material. Traditionally, in molecular nonlinear spectroscopy one tunes the input laser frequencies to the molecular energy levels for highly enhanced doubly or triply resonant interactions. With metasurfaces the situation is different, and by proper design of the nanostructures, one may tune the material energy levels to match the incoming laser frequencies. Here we use multi-parameter genetic algorithm methodologies to optimize the nonlinear Four Wave Mixing response, and show that the intuitive conventional approach of trying to match the transmission spectrum to the relevant laser frequencies indeed leads to strong enhancement, but not necessarily to the optimal design. We demonstrate, experimentally and by direct nonlinear field calculations, that the near field mode distribution and spatial modes overlap are the dominant factor for optimized design.
2D materials provide a platform for strong light--matter interactions, creating wide-ranging design opportunities via new-material discoveries and new methods for geometrical structuring. We derive general upper bounds to the strength of such light--matter interactions, given only the optical conductivity of the material, including spatial nonlocality, and otherwise independent of shape and configuration. Our material figure of merit shows that highly doped graphene is an optimal material at infrared frequencies, whereas single-atomic-layer silver is optimal in the visible. For quantities ranging from absorption and scattering to near-field spontaneous-emission enhancements and radiative heat transfer, we consider canonical geometrical structures and show that in certain cases the bounds can be approached, while in others there may be significant opportunity for design improvement. The bounds can encourage systematic improvements in the design of ultrathin broadband absorbers, 2D antennas, and near-field energy harvesters.
By means of the ultrafast optical Kerr effect method coupled to optical heterodyne detection (OHD-OKE), we characterize the third order nonlinear response of graphene at telecom wavelength, and compare it to experimental values obtained by the Z-scan method on the same samples. From these measurements, we estimate a negative nonlinear refractive index for monolayer graphene, $n_2 = - 1.1times 10^{-13} m^2/W$. This is in contradiction to previously reported values, which leads us to compare our experimental measurements obtained by the OHD-OKE and the Z-scan method with theoretical and experimental values found in the literature, and to discuss the discrepancies, taking into account parameters such as doping.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا