Pressure-induced metallization and superconducting phase in ReS2


Abstract in English

Among the family of TMDs, ReS2 takes a special position, which crystalizes in a unique distorted low-symmetry structure at ambient conditions. The interlayer interaction in ReS2 is rather weak, thus its bulk properties are similar to that of monolayer. However, how does compression change its structure and electronic properties is unknown so far. Here using ab initio crystal structure searching techniques, we explore the high-pressure phase transitions of ReS2 extensively and predict two new high-pressure phases. The ambient pressure phase transforms to a distorted-1T structure at very low pressure and then to a tetragonal I41/amd structure at around 90 GPa. The distorted-1T structure undergoes a semiconductor-metal transition (SMT) at around 70 GPa with a band overlap mechanism. Electron-phonon calculations suggest that the I41/amd structure is superconducting and has a critical superconducting temperature of about 2 K at 100 GPa. We further perform high-pressure electrical resistance measurements up to 102 GPa. Our experiments confirm the SMT and the superconducting phase transition of ReS2 under high pressure. These experimental results are in good agreement with our theoretical predictions.

Download