No Arabic abstract
We simulate the evolution of cluster galaxies hot interstellar medium (ISM) gas due to ram pressure and thermal conduction in the intracluster medium (ICM). At the density and temperature of the ICM, the mean free paths of ICM electrons are comparable to the sizes of galaxies, therefore electrons can efficiently transport heat due to thermal conduction from the hot ICM to the cooler ISM. Galaxies consisting of dark matter halos and hot gas coronae are embedded in an ICM-like `wind tunnel in our simulations. In this paper, we assume that thermal conduction is isotropic and include the effects of saturation. We find that as heat is transferred from the ICM to the ISM, the cooler denser ISM expands and evaporates. This process is significantly faster than gas loss due to ram pressure stripping; for our standard model galaxy the evaporation time is $160$ Myr while the ram pressure stripping timescale is $2.5$ Gyr. Thermal conduction also suppresses the formation of shear instabilities, and there are no stripped ISM tails since the ISM evaporates before tails can form. Observations of long-lived X-ray emitting coronae and ram pressure stripped X-ray tails in galaxies in group and cluster environments therefore require that thermal conduction is suppressed or offset by some additional physical process. The most likely process is anisotropic thermal conduction due to magnetic fields in the ISM and ICM, which we simulate and study in the next paper in this series.
We simulate anisotropic thermal conduction between the intracluster medium (ICM) and the hot coronal interstellar medium (ISM) gas in cluster galaxies. In the earlier Paper I (Vijayaraghavan & Sarazin 2017a), we simulated the evaporation of the hot ISM due to isotropic (possibly saturated) conduction between the ISM and ICM. We found that hot coronae evaporate on $sim 10^2$ Myr timescales, significantly shorter than the $sim 10^3$ Myr gas loss times due to ram pressure stripping. No tails of stripped gas are formed. This is in tension with the observed ubiquity and implied longevity of compact X-ray coronae and stripped ISM tails, and requires the suppression of evaporation, possibly due to magnetic fields and anisotropic conduction. We perform a series of wind tunnel simulations similar to Paper I, now including ISM and ICM magnetic fields. We simulate the effect of anisotropic conduction for a range of extreme magnetic field configurations: parallel and perpendicular to the ICM wind, and continuous and completely disjoint between the ISM and ICM. We find that when conduction is anisotropic, gas loss due to evaporation is severely reduced; the overall gas loss rates with and without anisotropic conduction do not differ by more than $10 - 20%$. Magnetic fields also prevent stripped tails from evaporating in the ICM by shielding, and providing few pathways for heat transport between the ICM and ISM. The morphology of stripped tails and magnetic fields in the tails and wakes of galaxies are sensitive to the initial magnetic field configuration.
We studied the unbiased optical brightness distribution which was calculated from the survival analysis of host galaxies and its relationship with the Swift GRB data of the host galaxies observed by the Keck telescopes. Based on the sample obtained from merging the Swift GRB table and the Keck optical data we also studied the dependence of this distribution on the data of the GRBs. Finally, we compared the HGs distribution with standard galaxies distribution which is in the DEEP2 galaxies catalog.
Galaxy clusters host a large reservoir of diffuse plasma with radially-varying temperature profiles. The efficiency of thermal conduction in the intracluster medium (ICM) is complicated by the existence of turbulence and magnetic fields, and has received a lot of attention in the literature. Previous studies suggest that the magnetothermal instability developed in outer regions of galaxy clusters would drive magnetic field lines preferentially radial, resulting in efficient conduction along the radial direction. Using a series of spherically-symmetric simulations, here we investigate the impact of thermal conduction on the observed temperature distributions in outer regions of three massive clusters, and find that thermal conduction substantially modifies the ICM temperature profile. Within 3 Gyr, the gas temperature at a representative radius of $0.3r_{500}$ typically decreases by ~10 - 20% and the average temperature slope between $0.3r_{500}$ and $r_{500}$ drops by ~ 30 - 40%, indicating that the observed ICM would not stay in a long-term equilibrium state in the presence of thermal conduction. However, X-ray observations show that the outer regions of massive clusters have remarkably similar radially-declining temperature profiles, suggesting that they should be quite stable. Our study thus suggests that the effective conductivity along the radial direction must be suppressed below the Spitzer value by a factor of 10 or more, unless additional heating sources offset conductive cooling and maintain the observed temperature distributions. Our study provides a smoking-gun evidence for the suppression of parallel conduction along magnetic field lines in low-collisionality plasmas by kinetic mirror or whistler instabilities.
X-ray-emitting coronae of nearby galaxies are expected to be produced either by accretion from the intergalactic medium and/or by various galactic feedback. We herein present a systematical analysis of the Chandra observations of 53 nearby edge-on disk galaxies over a range of 3 orders of magnitude in SFR. Various coronal properties, such as the luminosity, vertical/horizontal extent, and other inferred parameters, are characterized for all the sample galaxies. For galaxies with high enough counting statistics, we also examine the thermal and chemical states of the coronal gas. Here we concentrate on the coronal luminosity (Lx), estimated in 0.5-2keV and within 5 times the diffuse X-ray vertical scale height. We find Lx strongly correlates with the SFR for the whole sample. But the inclusion of Ia SNe in the total energy input (E_SN) gives an even tighter correlation, which may be characterized with a linear relation, Lx=0.5%E_SN, and with a dispersion of 0.45dex. Moreover, the coronal radiation efficiency (eta=Lx/E_SN) shows little correlation with either the stellar mass or the gravitational mass (M_TF, inferred from the rotation velocity), but is significantly correlated with their ratio (M_TF/M_*), which may be expressed as a linear scaling relation eta=0.35%M_TF/M_* for the entire ranges of galaxy parameters. This joint scaling relation suggests that the coronae are self-regulated by the combination of gravitational confinement and feedback. But SN appears to be the primary heating source, because about half of our galaxies are not massive enough to allow for the accretion to play a major role. The commonly low eta further suggests that the bulk of the SN energy likely flows out into large-scale galactic halos for essentially all the galaxies. Such ubiquitous outflows could have profound implications for understanding the ecosystem, hence the evolution of galaxies.
The giant radio relic in CIZA J2242.8+5301 is likely evidence of a Mpc sized shock in a massive merging galaxy cluster. However, the exact shock properties are still not clearly determined. In particular, the Mach number derived from the integrated radio spectrum exceeds the Mach number derived from the X-ray temperature jump by a factor of two. We present here a numerical study, aiming for a model that is consistent with the majority of observations of this galaxy cluster. We first show that in the northern shock upstream X-ray temperature and radio data are consistent with each other. We then derive progenitor masses for the system using standard density profiles, X-ray properties and the assumption of hydrostatic equilibrium. We find a class of models that is roughly consistent with weak lensing data, radio data and some of the X-ray data. Assuming a cool-core versus non-cool-core merger, we find a fiducial model with a total mass of $1.6 times 10^{15},M_odot$, a mass ratio of 1.76 and a Mach number that is consistent with estimates from the radio spectrum. We are not able to match X-ray derived Mach numbers, because even low mass models over-predict the X-ray derived shock speeds. We argue that deep X-ray observations of CIZA J2242.8+5301 will be able to test our model and potentially reconcile X-ray and radio derived Mach numbers in relics.