Do you want to publish a course? Click here

First non-icosahedral boron allotrope synthesized at high pressure and high temperature

90   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Theoretical predictions of pressure-induced phase transformations often become long-standing enigmas because of limitations of contemporary available experimental possibilities. Hitherto the existence of a non-icosahedral boron allotrope has been one of them. Here we report on the first non-icosahedral boron allotrope, which we denoted as {zeta}-B, with the orthorhombic {alpha}-Ga-type structure (space group Cmce) synthesized in a diamond anvil cell at extreme high-pressure high-temperature conditions (115 GPa and 2100 K). The structure of {zeta}-B was solved using single-crystal synchrotron X-ray diffraction and its compressional behavior was studied in the range of very high pressures (115 GPa to 135 GPa). Experimental validation of theoretical predictions reveals the degree of our up-to-date comprehension of condensed matter and promotes further development of the solid state physics and chemistry.



rate research

Read More

X-ray diffraction and Raman scattering measurements, and first-principles calculations are performed to search for the formation of NaCl-hydrogen compound. When NaCl and H$_{2}$ mixture is laser-heated to above 1500 K at pressures exceeding 40 GPa, we observed the formation of NaClH$_{textit{x}}$ with $textit{P}$6$_{3}$/$textit{mmc}$ structure which accommodates H$_{2}$ molecules in the interstitial sites of NaCl lattice forming ABAC stacking. Upon the decrease of pressure at 300 K, NaClH$_textit{x}$ remains stable down to 17 GPa. Our calculations suggest the observed NaClH$_{textit{x}}$ is NaCl(H$_{2}$). Besides, a hydrogen-richer phase NaCl(H$_{2}$)$_{4}$ is predicted to become stable at pressures above 40 GPa.
This work demonstrates the effectiveness of the high-pressure method for the production of graphite and diamond with a high degree of boron doping using adamantanecarborane mixture as a precursor. At 8 GPa and $1700 ^{o}C$, graphite is obtained from adamantane $C_{10}H_{16}$, whereas microcrystals of boron-doped diamond (2{div}2.5 at.% of boron) are synthesized from a mixture of adamantane and ortho-carborane $C_{2}B_{10}H_{12}$ (atomic ratio B:C = 5:95). This result shows convincingly the catalytical activity of boron in the synthesis of diamond under high pressure. At pressures lower than 7 GPa, only graphite is synthesized from the adamantane and carborane mixture. Graphitization starts at quite low temperatures (below $1400 ^{o}C$) and an increase in temperature simultaneously increases boron content and the quality of the graphite crystal lattice. Thorough study of the material structure allows us to assume that the substitutional boron atoms are distributed periodically and equidistantly from each other in the graphite layers at high boron concentrations (>1 at.%). The theoretical arguments and model ab initio calculations confirm this assumption and explain the experimentally observed boron concentrations.
A first cobalt boride with the Co:B ratio below 1:1, Co5B16, was synthesized under high-pressure high-temperature conditions. It has a unique orthorhombic structure (space group Pmma, a = 19.1736(12), b = 2.9329(1), and c = 5.4886(2) {AA}, R1 (all data) = 0.037). The material is hard, paramagnetic, with a weak temperature dependence of magnetic susceptibility.
Studies of polynitrogen phases are of great interest for fundamental science and for the design of novel high energy density materials. Laser heating of pure nitrogen at 140 GPa in a diamond anvil cell led to the synthesis of a polymeric nitrogen allotrope with the black phosphorus structure, bp-N. The structure was identified in situ using synchrotron single-crystal X-ray diffraction and further studied by Raman spectroscopy and density functional theory calculations. The discovery of bp-N brings nitrogen in line with heavier pnictogen elements, resolves incongruities regarding polymeric nitrogen phases and provides insights into polynitrogen arrangements at extreme densities.
The equation of state, structural behavior and phase stability of {alpha}-uranium have been investigated up to 1.3 TPa using density functional theory, adopting a simple description of electronic structure that neglects the spin-orbit coupling and strong electronic correlations. The comparison of the enthalpies of Cmcm (alpha-U), bcc, hcp, fcc, and bct predicts that the aplpha-U phase is stable up to a pressure of ~285 GPa, above which it transforms to a bct-U phase. The enthalpy differences between the bct and bcc phase decrease with pressure, but bcc is energetically unfavorable at least up to 1.3 TPa, the upper pressure limit of this study. The enthalpies of the close-packed hcp and fcc phases are 0.7 eV and 1.0 eV higher than that of the stable bct-U phase at a pressure of 1.3 TPa, supporting the wide stability field of the bcc phase. The equation of state, the lattice parameters and the anisotropic compression parameters are in good agreement with experiment up 100 GPa and previous theory. The elastic constants at the equilibrium volume of alpha-U confirm our bulk modulus. This suggests that our simplified description of electronic structure of uranium captures the relevant physics and may be used to describe bonding and other light actinides that show itinerant electronic behavior especially at high pressure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا