The process of electron-positron pair production by a photon with subsequent annihilation to a single photon in a strong magnetic field has been studied. The general amplitude has been calculated and the process rate have been found in the low Landau levels approximation (resonant and nonresonant cases). The comparison of resonant and nonresonant cases shows a significant excess of the resonant rate. The polarization of the final photon in a strong magnetic field has also been found. It has been shown that polarizations of the initial and the final photons are independent except for the case of normal linear polarization of the initial photon.
If the $X(3872)$ is a weakly bound charm-meson molecule, it can be produced in $e^+ e^-$ annihilation by the creation of $D^{*0} bar D^{*0}$ from a virtual photon followed by the rescattering of the P-wave charm-meson pair into the $X$ and a photon. A triangle singularity produces a narrow peak in the cross section for $e^+ e^- to X gamma$ 2.2 MeV above the $D^{*0} bar{D}^{*0}$ threshold. We predict the normalized cross section in the region of the peak. We show that the absorptive contribution to the cross section for $e^+ e^- to D^{*0} bar D^{*0} to X gamma$, which was calculated previously by Dubynskiy and Voloshin, does not give a good approximation to the peak from the triangle singularity.
If the $X(3872)$ is a weakly bound charm-meson molecule, it can be produced in $e^+ e^-$ annihilation by the creation of $D^{*0} bar D^{*0}$ from a virtual photon followed by the rescattering of the charm-meson pair into $X$ and a photon. A triangle singularity produces a narrow peak in the cross section for $e^+ e^- to X gamma$ about 2.2 MeV above the $D^{*0} bar{D}^{*0}$ threshold. We predict the normalized cross section in the region near the peak. The peak from the triangle singularity may be observable by the BESIII detector.
The production cross sections of $J/psi~eta_b$, $Upsilon;eta_c$ pairs in a single boson $e^+e^-$ annihilation have been studied in a wide range of energies, which will be achieved at future $e^+e^-$ colliders. The main color singlet contributions to the production processes are taken into account, including the one loop QCD contribution.
We describe ZFITTER, a Fortran program based on a semi-analytical approach to fermion pair production in e+e- annihilation at a wide range of centre-of-mass energies, including the PETRA, TRISTAN, LEP1/SLC, and LEP2 energies. A flexible treatment of complete O(alpha) QED corrections and of some higher order contributions is made possible with three calculational chains containing different realistic sets of restrictions in the photon phase space. Numerical integrations are at most one-dimensional. Complete O(alpha) weak loop corrections supplemented by selected higher-order terms may be included. The program calculates Delta r, the Z width, differential cross-sections, total cross-sections, integrated forward-backward asymmetries, left-right asymmetries, and for tau pair production also final-state polarization effects. Various interfaces allow fits to be performed with different sets of free parameters.
Large scale calculation for the radiative corrections required for the current and future collider experiments can be done automatically using the GRACE-LOOP system. Here several results for e+e- --> 3-body processes are presented including e+e- --> e+e-H and e+e- --> nu nubar gamma.
M. M. Diachenko
,O. P. Novak
,
.
(2017)
.
"A cascade of $e^-e^+$ pair production by a photon with subsequent annihilation to a single photon in a strong magnetic field"
.
Oleksandr Novak
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا