No Arabic abstract
We measure the homogeneous excitation linewidth of regioregular poly(3-hexylthiophene), a model semicrystalline polymeric semiconductor, by means of two-dimensional coherent photoluminescence excitation spectroscopy. At a temperature of 8,K, we find a linewidth that is always $gtrsim 110$,meV full-width-at-half-maximum, which is a significant fraction of the total linewidth. It displays a spectral dependence and is minimum near the 0--0 origin peak. We interpret this spectral dependence of the homogeneous excitation linewidth within the context of a weakly coupled aggregate model.
We probe charge photogeneration and subsequent recombination dynamics in neat regioregular poly(3-hexylthiophene) films over six decades in time by means of time-resolved photoluminescence spectroscopy. Exciton dissociation at 10K occurs extrinsically at interfaces between molecularly ordered and disordered domains. Polaron pairs thus produced recombine by tunnelling with distributed rates governed by the distribution of electron-hole radii. Quantum-chemical calculations suggest that hot-exciton dissociation at such interfaces results from a high charge-transfer character.
The optoelectronic properties of macromolecular semiconductors depend fundamentally on their solid-state microstructure. For example, the molecular-weight distribution influences polymeric- semiconductor properties via diverse microstructures; polymers of low weight-average molecular weight (Mw) form unconnected, extended-chain crystals, usually of a paraffinic structure. Because of the non-entangled nature of the relatively short-chain macromolecules, this leads to a polycrystalline, one-phase morphology. In contrast, with high-Mw materials, where average chain lengths are longer than the length between entanglements, two-phase morphologies, comprised of crystalline moieties embedded in largely unordered (amorphous) regions, are obtained. We investigate charge photogeneration processes in neat regioregular poly(3-hexylthiophene) (P3HT) of varying Mw by means of time-resolved photoluminescence (PL) spectroscopy. At 10 K, PL originating from recombination of long-lived charge pairs decays over microsecond timescales. Both the amplitude and decay rate distribution depend strongly on Mw. In films with dominant one-phase chain-extended microstructures, the delayed PL is suppressed as a result of a diminished yield of photoinduced charges, and its decay is significantly faster than in two-phase microstructures. However, independent of Mw, charge recombination regenerates singlet excitons in torsionally disordered chains forming more strongly coupled photophysical aggregates than those in the steady-state ensemble, with delayed PL lineshape reminiscent of that in paraffinic morphologies at steady state. We conclude that highly delocalized excitons in disordered regions between crystalline and amorphous phases dissociate extrinsically with yield and spatial distribution that depend intimately upon microstructure.
The excitonic homogeneous linewidth of an exfoliated monolayer MoSe$_2$ encapsulated in hexagonal boron nitride is directly measured using multidimensional coherent spectroscopy with micron spatial resolution. The linewidth is 0.26 $pm$ 0.02 meV, corresponding to a dephasing time $T_2 approx$ 2.5 ps, which is almost half the narrowest reported values for non-encapsulated MoSe$_2$ flakes. We attribute the narrowed linewidth to Coulomb screening by the encapsulated material and suppression of non-radiative processes. Through direct measurements of encapsulated and non-encapsulated monolayers, we confirm that encapsulation reduces the sample inhomogeneity. However, linewidths measured using photoluminescence and linear absorption remain dominated by inhomogeneity, and these linewidths are roughly 5 times larger than the homogeneous linewidth in even the highest-quality encapsulated materials. The homogeneous linewidth of non-encapsulated monolayers is very sensitive to temperature cycling, whereas encapsulated samples are not modified by temperature cycling. The nonlinear signal intensity of non-encapsulated monolayers is degraded by high-power optical excitation, whereas encapsulated samples are very resilient to optical excitation with optical powers up to the point of completely bleaching the exciton.
The strong light matter interaction and the valley selective optical selection rules make monolayer (ML) MoS2 an exciting 2D material for fundamental physics and optoelectronics applications. But so far optical transition linewidths even at low temperature are typically as large as a few tens of meV and contain homogenous and inhomogeneous contributions. This prevented in-depth studies, in contrast to the better-characterized ML materials MoSe2 and WSe2. In this work we show that encapsulation of ML MoS2 in hexagonal boron nitride can efficiently suppress the inhomogeneous contribution to the exciton linewidth, as we measure in photoluminescence and reflectivity a FWHM down to 2 meV at T = 4K. This indicates that surface protection and substrate flatness are key ingredients for obtaining stable, high quality samples. Among the new possibilities offered by the well-defined optical transitions we measure the homogeneous broadening induced by the interaction with phonons in temperature dependent experiments. We uncover new information on spin and valley physics and present the rotation of valley coherence in applied magnetic fields perpendicular to the ML.
We calculate the time evolution of the transient reflection signal in an MoS$_2$ monolayer on a SiO$_2$/Si substrate using first-principles out-of-equilibrium real-time methods. Our simulations provide a simple and intuitive physical picture for the delayed, yet ultrafast, evolution of the signal whose rise time depends on the excess energy of the pump laser: at laser energies above the A- and B-exciton, the pump pulse excites electrons and holes far away from the K valleys in the first Brillouin zone. Electron-phonon and hole-phonon scattering lead to a gradual relaxation of the carriers towards small $textit{Active Excitonic Regions}$ around K, enhancing the dielectric screening. The accompanying time-dependent band gap renormalization dominates over Pauli blocking and the excitonic binding energy renormalization. This explains the delayed buildup of the transient reflection signal of the probe pulse, in excellent agreement with recent experimental data. Our results show that the observed delay is not a unique signature of an exciton formation process but rather caused by coordinated carrier dynamics and its influence on the screening.