No Arabic abstract
The layered compound KCu$_3$As$_2$O$_7$(OD)$_3$, comprising distorted kagome planes of $S=1/2$ Cu$^{2+}$ ions, is a recent addition to the family of type-II multiferroics. Previous zero field neutron diffraction work has found two helically ordered regimes in kns, each showing a distinct coupling between the magnetic and ferroelectric order parameters. Here, we extend this work to magnetic fields up to $20$~T using neutron powder diffraction, capacitance, polarization, and high-field magnetization measurements, hence determining the $H-T$ phase diagram. We find metamagnetic transitions in both low temperatures phases around $mu_0 H_c sim 3.7$~T, which neutron powder diffraction reveals to correspond to a rotation of the helix plane away from the easy plane, as well as a small change in the propagation vector. Furthermore, we show that the sign of the ferroelectric polarization is reversible in a magnetic field, although no change is observed (or expected on the basis of the magnetic structure) due to the transition at $3.7$~T. We finally justify the temperature dependence of the polarization in both zero-field ordered phases by a symmetry analysis of the free energy expansion.
Ambipolar transport is a commonly occurring theme in semimetals and semiconductors. Here we present an analytical formulation of the conductivity for a two-band system. Electron and hole carrier densities and their respective conductivities are mapped into a two-dimensional unit-less phase space. Provided that one of the carrier densities is known, the dimensionless phase space can be probed through magnetoresistance measurements. This formulation of the two-band model for conductivity is applied to magnetoresistance experiments on Ca$_3$Ru$_2$O$_7$. While previous such measurements focused on the low-temperature limit, we cover a broad temperature range and find negative magnetoresistance in an intermediate interval below the electronic transition at 48 K. The low-temperature magnetoresistance in Ca$_3$Ru$_2$O$_7$ is consistent with a two-band structure. However, the model fails to describe the full temperature and magnetic field dependence. Negative magnetoresistance found in an intermediate temperature range is, for example, not captured by this model. We thus conclude that the electronic and magnetic structure in this intermediate temperature range render the system beyond the most simple two-band model.
The low-temperature magnetic phase diagram of the multiferroic system FeTe$_2$O$_5$Br down to 300 mK and up to 9 T is presented. Short-range magnetic correlations within the crystal layers start to develop already at $sim$50 K, i.e., far above $T_{N1} sim$ 11.0 K, where the system undergoes a magnetic phase transition into the high-temperature incommensurate (HT-ICM) phase. Only 0.5 K lower, at $T_{N2}$, the system undergoes a second phase transition into the low-temperature incommensurate amplitude-modulated (LT-ICM) phase accompanied by a spontaneous electric polarization. When the magnetic field is applied, the transition temperatures shift depending on the field orientation. In the case of $B||b$ and $B >$ 4.5 T, the HT-ICM phase disappears along with the electric polarization in the LT-ICM phase. The field dependence of the magnetic transition temperatures is explained in the context of the magnetic susceptibility behavior. Similarities and differences between the novel amplitude-modulated and well-established helicoidal magnetoelectrics are discussed.
In the quest to realize a quantum spin liquid (QSL), magnetic long-range order is hardly welcome. Yet it can offer deep insights into a complex world of strong correlations and fluctuations. Much hope was placed in the cubic pyrochlore Yb$_2$Ti$_2$O$_7$ as a putative U(1) QSL but a new class of ultra-pure single crystals make it abundantly clear the stoichiometric compound is a ferromagnet. Here we present a detailed experimental and theoretical study of the corresponding field-temperature phase diagram. We find it to be richly anisotropic with a critical endpoint for $vec{B},parallel,langle 100rangle$, while field parallel to $langle 110 rangle$ and $langle 111 rangle$ enhances the critical temperature by up to a factor of two and shifts the onset of the field-polarized state to finite fields. Landau theory shows that Yb$_2$Ti$_2$O$_7$ in some ways is remarkably similar to pure iron. However, it also pinpoints anomalies that cannot be accounted for at the classical mean-field level including a dramatic enhancement of $T_{mathrm{C}}$ and reentrant phase boundary by fields with a component transverse to the easy axes, as well as the anisotropy of the upper critical field in the quantum limit.
Using maximally localized Wannier functions obtained from DFT calculations, we derive an effective Hubbard Hamiltonian for a bilayer of Sr$_3$Cr$_2$O$_7$, the $n=2$ member of the Ruddlesden-Popper Sr$_{n+1}$Cr$_n$O$_{3n+1}$ system. The model consists of effective $t_{2g}$ orbitals of Cr in two square lattices, one above the other. The model is further reduced at low energies and two electrons per site, to an effective Kugel-Khomskii Hamiltonian that describes interacting spins 1 and pseudospins 1/2 at each site describing spin and orbitals degrees of freedom respectively. We solve this Hamiltonian at zero temperature using pseudospin bond operators and spin waves. Our results confirm a previous experimental and theoretical study that proposes spin ordering antiferromagnetic in the planes and ferromagnetic between planes, while pseudospins form vertical singlets, although the interplane separation is larger than the nearest-neighbor distance in the plane. We explain the physics behind this rather unexpected behavior.
We investigated Sr$_3$Ru$_2$O$_7$, a quantum critical metal that shows a metamagnetic quantum phase transition and electronic nematicity, through density functional calculations. These predict a ferromagnetic ground state in contrast to the experimentally observed paramagnetism, raising the question of competing magnetic states and associated fluctuations that may suppress magnetic order. We did a search to identify such low energy antiferromagnetically ordered metastable states. We find that the lowest energy antiferromagnetic state has a striped order. This corresponds to the E-type order that has been shown to be induced by Mn alloying. We also note significant transport anisotropy in this E-type ordered state. These results are discussed in relation to experimental observations.