Do you want to publish a course? Click here

Spherically symmetric configurations of General Relativity in presence of scalar field: separation of test body circular orbits

86   0   0.0 ( 0 )
 Added by Oleksandr Stashko
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study test-body orbits in the gravitational field of a static spherically symmetric object in presence of a minimally coupled nonlinear scalar field. We generated a two-parametric family of scalar field potentials, which allow finding solutions of Einsteins equations in an analytic form. The results are presented by means of hypergeometric functions; they describe either a naked singularity (NS) or a black hole (BH). Our numerical investigation shows that in both cases the stable circular orbits can form separated (non-connected) regions around the configuration. We found existence conditions for such separated regions and present examples for some family parameters in case of NS and BH. The results may be of interest for testing models of the dynamical dark energy.



rate research

Read More

There are a number of publications on relativistic objects dealing either with black holes or naked singularities in the center. Here we show that there exist static spherically symmetric solutions of Einstein equations with a strongly nonlinear scalar field with potential $V(varphi)simsinh(varphi^{2n})$, which allow the appearance of singularities of a new type (spherical singularities) outside the center of isolated configuration. The space-time is assumed to be asymptotically flat. Depending on the configuration parameters, we show that the distribution of the stable circular orbits of test bodies around the configuration is either similar to that in the case of the Schwarzschild solution (thus mimicking an ordinary black hole), or it contains additional rings of unstable orbits.
The existence and stability of circular orbits (CO) in static and spherically symmetric (SSS) spacetime are important because of their practical and potential usefulness. In this paper, using the fixed point method, we first prove a necessary and sufficient condition on the metric function for the existence of timelike COs in SSS spacetimes. After analyzing the asymptotic behavior of the metric, we then show that asymptotic flat SSS spacetime that corresponds to a negative Newtonian potential at large $r$ will always allow the existence of CO. The stability of the CO in a general SSS spacetime is then studied using the Lyapunov exponent method. Two sufficient conditions on the (in)stability of the COs are obtained. For null geodesics, a sufficient condition on the metric function for the (in)stability of null CO is also obtained. We then illustrate one powerful application of these results by showing that an SU(2) Yang-Mills-Einstein SSS spacetime whose metric function is not known, will allow the existence of timelike COs. We also used our results to assert the existence and (in)stabilities of a number of known SSS metrics.
In terms of Sturms theorem, we reexamine a marginal stable circular orbit (MSCO) such as the innermost stable circular orbit (ISCO) of a timelike geodesic in any spherically symmetric and static spacetime. MSCOs for some of exact solutions to the Einsteins equation are discussed. Strums theorem is explicitly applied to the Kottler (often called Schwarzschild-de Sitter) spacetime. Moreover, we analyze MSCOs for a spherically symmetric, static and vacuum solution in Weyl conformal gravity.
We study a marginally stable circular orbit (MSCO) such as the innermost stable circular orbit (ISCO) of a timelike geodesic in any spherically symmetric and static spacetime. It turns out that the metric components are separable from the constants of motion along geodesics. We show also that a metric component $g_{rr}$ with a radial coordinate $r$ does not affect MSCOs. This suggests that, as a test of gravity, any ISCO measurement may be put into the same category as gravitational redshift experiments. MSCOs for exact solutions to the Einsteins equation are also mentioned.
We discuss a way to obtain information about higher dimensions from observations by studying a brane-based spherically symmetric solution. The three classic tests of General Relativity are analyzed in details: the perihelion shift of the planet Mercury, the deflection of light by the Sun, and the gravitational redshift of atomic spectral lines. The braneworld version of these tests exhibits an additional parameter $b$ related to the fifth-coordinate. This constant $b$ can be constrained by comparison with observational data for massive and massless particles.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا