In this manuscript we present an approach to analyze the discontinuous Galerkin solution for general quasilinear elliptic problems. This approach is sufficiently general to extend most of the well-known discretization schemes, including BR1, BR2, SIPG and LDG, to nonlinear cases in a canonical way, and to establish the stability of their solution. Furthermore, in case of monotone and globally Lipschitz problems, we prove the existence and uniqueness of the approximated solution and the $h$-optimality of the error estimate in the energy norm as well as in the $L_2$ norm.