Aperture synthesis imaging of the carbon AGB star R Sculptoris: Detection of a complex structure and a dominating spot on the stellar disk


Abstract in English

We present near-infrared interferometry of the carbon-rich asymptotic giant branch (AGB) star R Sculptoris. The visibility data indicate a broadly circular resolved stellar disk with a complex substructure. The observed AMBER squared visibility values show drops at the positions of CO and CN bands, indicating that these lines form in extended layers above the photosphere. The AMBER visibility values are best fit by a model without a wind. The PIONIER data are consistent with the same model. We obtain a Rosseland angular diameter of 8.9+-0.3 mas, corresponding to a Rosseland radius of 355+-55 Rsun, an effective temperature of 2640+-80 K, and a luminosity of log L/Lsun=3.74+-0.18. These parameters match evolutionary tracks of initial mass 1.5+-0.5 Msun and current mass 1.3+-0.7 Msun. The reconstructed PIONIER images exhibit a complex structure within the stellar disk including a dominant bright spot located at the western part of the stellar disk. The spot has an H-band peak intensity of 40% to 60% above the average intensity of the limb-darkening-corrected stellar disk. The contrast between the minimum and maximum intensity on the stellar disk is about 1:2.5. Our observations are broadly consistent with predictions by dynamic atmosphere and wind models, although models with wind appear to have a circumstellar envelope that is too extended compared to our observations. The detected complex structure within the stellar disk is most likely caused by giant convection cells, resulting in large-scale shock fronts, and their effects on clumpy molecule and dust formation seen against the photosphere at distances of 2-3 stellar radii.

Download