Do you want to publish a course? Click here

The Fermi blazar sequence

112   0   0.0 ( 0 )
 Added by Gabriele Ghisellini
 Publication date 2017
  fields Physics
and research's language is English
 Authors G. Ghisellini




Ask ChatGPT about the research

We revisit the blazar sequence exploiting the complete, flux limited sample of blazars with known redshift detected by the Fermi satellite after 4 years of operations (the 3LAC sample). We divide the sources into gamma-ray luminosity bins, collect all the archival data for all blazars, and construct their spectral energy distribution (SED). We describe the average SED of blazars in the same luminosity bin through a very simple, completely phenomenological function consisting of two broken power laws connecting with a power law of fixed slope describing the radio emission. We do that separately for BL Lacs and for flat spectrum radio quasars (FSRQs) and also for all blazars together. The main results are: i) FSRQs display approximately the same SED as the luminosity increases, except for the fact that the relative importance of the high energy peak increases; ii) as a consequence, X-ray spectra of FSRQs become harder for larger luminosities; iii) BL Lacs form indeed a sequence: they become redder (i.e. the peak frequencies becomes smaller) for increasing luminosities, with a steeper gamma-ray slope and a larger dominance of the high energy peak; iv) for all blazars (BL Lacs+FSRQs) these properties becomes more prominent, as the highest luminosity bin is populated mostly by FSRQs and the lowest luminosity bin mostly by BL Lacs. This agrees with the original blazar sequence, although BL Lacs never have an average gamma-ray slope as hard as found in the original sequence. v) At high luminosities, a large fraction of FSRQs shows signs of thermal emission from the accretion disc, contributing in the optical-UV.

rate research

Read More

We propose and test a fairly simple idea that could account for the blazar sequence: all jets are launched with similar energy per baryon, independently of their power. For instance, flat-spectrum radio quasars (FSRQs), the most powerful jets, manage to accelerate to high bulk Lorentz factor, as observed in the radio. As a result, the emission region will have a rather modest magnetization which will induce a steep particle spectra therein and a rather steep emission spectra in the gamma-rays; particularly in the textit{Fermi}-LAT band. For the weaker jets, namely BL Lacertae objects (BL Lacs), the opposite holds true; i.e., the jet does not achieve a very high bulk Lorentz factor, leading to more magnetic energy available for non-thermal particle acceleration and harder emission spectra. Moreover, this model requires but a handful of parameters. By means of numerical simulations we have accomplished to reproduce the spectral energy distributions and light-curves from fiducial sources following the aforementioned model. With the a complete evolution of the broadband spectra we were able to study in detail the spectral features at any particular frequency band at any given stage. Finally numerical results are compared and contrasted with observations.
The Fermi-LAT survey provides a large sample of blazars selected on the strength of their inverse Compton emission. We cross-correlate the first Fermi-LAT catalogue with the CRATES radio catalogue and use this sample to investigate whether blazar gamma-ray luminosities are influenced by the availability of external photons to be up-scattered. Using the 8.4 GHz flux densities of their compact radio cores as a proxy for their jet power, we calculate their Compton Efficiency parameters, which measure the ability of jets to convert power in the form of ultra-relativistic electrons into Compton gamma-rays. We find no clear differences in Compton efficiencies between BL Lac objects and FSRQs and no anti-correlation between Compton efficiency and synchrotron peak frequency. This suggests that the scattering of external photons is energetically unimportant compared to the synchrotron self-Compton process. These results contradict the predictions of the blazar sequence.
We use the third catalog of blazars detected by Fermi/LAT (3LAC) and gamma-ray Narrow-line Seyfert 1 Galaxies (gamma-NLSy1s) to study the blazar sequence and relationship between them. Our results are as follows: (i) There is a weak anti-correlation between synchrotron peak frequency and peak luminosity for both Fermi blazars and gamma-NLSy1s, which supports the blazar sequence. However, after Doppler correction, the inverse correlation disappeared, which suggests that anti-correlation between synchrotron peak frequency and peak luminosity is affected by the beaming effect. (ii) There is a significant anti-correlation between jet kinetic power and synchrotron peak frequency for both Fermi blazars and gamma-NLSy1s, which suggests that the gamma-NLSy1s could fit well into the original blazar sequence. (iii) According to previous work, the relationship between synchrotron peak frequency and synchrotron curvature can be explained by statistical or stochastic acceleration mechanisms. There are significant correlations between synchrotron peak frequency and synchrotron curvature for whole sample, Fermi blazars and BL Lacs, respectively. The slopes of the correlation are consistent with statistical acceleration. For FSRQs, LBLs, IBLs, HBLs, and gamma-NLS1s, we also find a significant correlation, but in these cases the slopes can not be explained by previous theoretical models. (iv) The slope of relation between synchrotron peak frequency and synchrotron curvature in gamma-NLS1s is large than that of FSRQs and BL Lacs. This result may imply that the cooling dominates over the acceleration process for FSRQs and BL Lacs, while gamma-NLS1s is the opposite.
587 - C.-I. Bjornsson 2010
The high frequency component in blazars is thought to be due to inverse Compton scattered radiation. Recent observations by Fermi-LAT are used to evaluate the details of the scattering process. A comparison is made between the usually assumed single scattering scenario and one in which multiple scatterings are energetically important. In the latter case, most of the radiation is emitted in the Klein-Nishina limit. It is argued that several of the observed correlations defining the blazar sequence are most easily understood in a multiple scattering scenario. Observations indicate also that, in such a scenario, the blazar sequence is primarily governed by the energy density of relativistic electrons rather than that of the seed photons. The pronounced X-ray minimum in the spectral energy distribution often observed in the most luminous blazars is discussed. It is shown how this feature can be accounted for in a multiple scattering scenario by an extension of standard one-zone models.
We study the gamma-ray variability of 13 blazars observed with the Fermi Large Area Telescope (LAT). These blazars have the most complete light curves collected during the first 4 years of the Fermi sky survey. We model them with the Ornstein-Uhlenbeck (OU) process or a mixture of the OU processes. The OU process has power spectral density (PSD) proportional to 1/f^alpha with alpha changing at a characteristic time scale, tau_0, from 0 (tau>>tau_0) to 2 (tau<<tau_0). The PSD of the mixed OU process has two characteristic time scales and an additional intermediate region with 0<alpha<2. We show that the OU model provides a good description of the Fermi/LAT light curves of three blazars in our sample. For the first time we constrain a characteristic gamma-ray time scale of variability in two BL Lac sources, 3C 66A and PKS 2155-304 (tau_0=25 day and tau_0=43 day, respectively, in the observers frame), which are longer than the soft X-ray time scales detected in blazars and Seyfert galaxies. We find that the mixed OU process approximates the light curves of the remaining 10 blazars better than the OU process. We derive limits on their long and short characteristic time scales, and infer that their Fermi/LAT PSDs resemble a power-law function. We constrain the PSD slopes for all but one source in the sample. We find hints for sub-hour Fermi/LAT variability in four flat spectrum radio quasars. We discuss the implications of our results for theoretical models of blazar variability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا