Do you want to publish a course? Click here

Feasibility, Architecture and Cost Considerations of Using TVWS for Rural Internet Access in 5G

160   0   0.0 ( 0 )
 Added by Mohsin Khalil
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The cellular technology is mostly an urban technology that has been unable to serve rural areas well. This is because the traditional cellular models are not economical for areas with low user density and lesser revenues. In 5G cellular networks, the coverage dilemma is likely to remain the same, thus widening the rural-urban digital divide further. It is about time to identify the root cause that has hindered the rural technology growth and analyse the possible options in 5G architecture to address this issue. We advocate that it can only be accomplished in two phases by sequentially addressing economic viability followed by performance progression. We deliberate how various works in literature focus on the later stage of this two-phase problem and are not feasible to implement in the first place. We propose the concept of TV band white space (TVWS) dovetailed with 5G infrastructure for rural coverage and show that it can yield cost-effectiveness from a service provider perspective.



rate research

Read More

Internet has shown itself to be a catalyst for economic growth and social equity but its potency is thwarted by the fact that the Internet is off limits for the vast majority of human beings. Mobile phones---the fastest growing technology in the world that now reaches around 80% of humanity---can enable universal Internet access if it can resolve coverage problems that have historically plagued previous cellular architectures (2G, 3G, and 4G). These conventional architectures have not been able to sustain universal service provisioning since these architectures depend on having enough users per cell for their economic viability and thus are not well suited to rural areas (which are by definition sparsely populated). The new generation of mobile cellular technology (5G), currently in a formative phase and expected to be finalized around 2020, is aimed at orders of magnitude performance enhancement. 5G offers a clean slate to network designers and can be molded into an architecture also amenable to universal Internet provisioning. Keeping in mind the great social benefits of democratizing Internet and connectivity, we believe that the time is ripe for emphasizing universal Internet provisioning as an important goal on the 5G research agenda. In this paper, we investigate the opportunities and challenges in utilizing 5G for global access to the Internet for all (GAIA). We have also identified the major technical issues involved in a 5G-based GAIA solution and have set up a future research agenda by defining open research problems.
Quality of Service (QoS) metrics deal with network quantities, e.g. latency and loss, whereas Quality of Experience (QoE) provides a proxy metric for end-user experience. Many papers in the literature have proposed mappings between various QoS metrics and QoE. This paper goes further in providing analysis for QoE versus bandwidth cost. We measure QoE using the widely accepted Mean Opinion Score (MOS) rating. Our results naturally show that increasing bandwidth increases MOS. However, we extend this understanding by providing analysis for internet access scenarios, using TCP, and varying the number of TCP sources multiplexed together. For these target scenarios our analysis indicates what MOS increase you get by further expenditure on bandwidth. We anticipate that this will be of considerable value to commercial organizations responsible for bandwidth purchase and allocation.
The 5G Internet of Vehicles has become a new paradigm alongside the growing popularity and variety of computation-intensive applications with high requirements for computational resources and analysis capabilities. Existing network architectures and resource management mechanisms may not sufficiently guarantee satisfactory Quality of Experience and network efficiency, mainly suffering from coverage limitation of Road Side Units, insufficient resources, and unsatisfactory computational capabilities of onboard equipment, frequently changing network topology, and ineffective resource management schemes. To meet the demands of such applications, in this article, we first propose a novel architecture by integrating the satellite network with 5G cloud-enabled Internet of Vehicles to efficiently support seamless coverage and global resource management. A incentive mechanism based joint optimization problem of opportunistic computation offloading under delay and cost constraints is established under the aforementioned framework, in which a vehicular user can either significantly reduce the application completion time by offloading workloads to several nearby vehicles through opportunistic vehicle-to-vehicle channels while effectively controlling the cost or protect its own profit by providing compensated computing service. As the optimization problem is non-convex and NP-hard, simulated annealing based on the Markov Chain Monte Carlo as well as the metropolis algorithm is applied to solve the optimization problem, which can efficaciously obtain both high-quality and cost-effective approximations of global optimal solutions. The effectiveness of the proposed mechanism is corroborated through simulation results.
Ultra-reliable low latency communications (URLLC) arose to serve industrial IoT (IIoT) use cases within the 5G. Currently, it has inherent limitations to support future services. Based on state-of-the-art research and practical deployment experience, in this article, we introduce and advocate for three variants: broadband, scalable and extreme URLLC. We discuss use cases and key performance indicators and identify technology enablers for the new service modes. We bring practical considerations from the IIoT testbed and provide an outlook toward some new research directions.
111 - Chao Gan , Ruida Zhou , Jing Yang 2018
In this paper, we investigate cost-aware joint learning and optimization for multi-channel opportunistic spectrum access in a cognitive radio system. We investigate a discrete time model where the time axis is partitioned into frames. Each frame consists of a sensing phase, followed by a transmission phase. During the sensing phase, the user is able to sense a subset of channels sequentially before it decides to use one of them in the following transmission phase. We assume the channel states alternate between busy and idle according to independent Bernoulli random processes from frame to frame. To capture the inherent uncertainty in channel sensing, we assume the reward of each transmission when the channel is idle is a random variable. We also associate random costs with sensing and transmission actions. Our objective is to understand how the costs and reward of the actions would affect the optimal behavior of the user in both offline and online settings, and design the corresponding opportunistic spectrum access strategies to maximize the expected cumulative net reward (i.e., reward-minus-cost). We start with an offline setting where the statistics of the channel status, costs and reward are known beforehand. We show that the the optimal policy exhibits a recursive double threshold structure, and the user needs to compare the channel statistics with those thresholds sequentially in order to decide its actions. With such insights, we then study the online setting, where the statistical information of the channels, costs and reward are unknown a priori. We judiciously balance exploration and exploitation, and show that the cumulative regret scales in O(log T). We also establish a matched lower bound, which implies that our online algorithm is order-optimal. Simulation results corroborate our theoretical analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا