No Arabic abstract
Neural machine translation (NMT) models are able to partially learn syntactic information from sequential lexical information. Still, some complex syntactic phenomena such as prepositional phrase attachment are poorly modeled. This work aims to answer two questions: 1) Does explicitly modeling target language syntax help NMT? 2) Is tight integration of words and syntax better than multitask training? We introduce syntactic information in the form of CCG supertags in the decoder, by interleaving the target supertags with the word sequence. Our results on WMT data show that explicitly modeling target-syntax improves machine translation quality for German->English, a high-resource pair, and for Romanian->English, a low-resource pair and also several syntactic phenomena including prepositional phrase attachment. Furthermore, a tight coupling of words and syntax improves translation quality more than multitask training. By combining target-syntax with adding source-side dependency labels in the embedding layer, we obtain a total improvement of 0.9 BLEU for German->English and 1.2 BLEU for Romanian->English.
Despite the recent success on image classification, self-training has only achieved limited gains on structured prediction tasks such as neural machine translation (NMT). This is mainly due to the compositionality of the target space, where the far-away prediction hypotheses lead to the notorious reinforced mistake problem. In this paper, we revisit the utilization of multiple diverse models and present a simple yet effective approach named Reciprocal-Supervised Learning (RSL). RSL first exploits individual models to generate pseudo parallel data, and then cooperatively trains each model on the combined synthetic corpus. RSL leverages the fact that different parameterized models have different inductive biases, and better predictions can be made by jointly exploiting the agreement among each other. Unlike the previous knowledge distillation methods built upon a much stronger teacher, RSL is capable of boosting the accuracy of one model by introducing other comparable or even weaker models. RSL can also be viewed as a more efficient alternative to ensemble. Extensive experiments demonstrate the superior performance of RSL on several benchmarks with significant margins.
Unsupervised neural machine translation(NMT) is associated with noise and errors in synthetic data when executing vanilla back-translations. Here, we explicitly exploits language model(LM) to drive construction of an unsupervised NMT system. This features two steps. First, we initialize NMT models using synthetic data generated via temporary statistical machine translation(SMT). Second, unlike vanilla back-translation, we formulate a weight function, that scores synthetic data at each step of subsequent iterative training; this allows unsupervised training to an improved outcome. We present the detailed mathematical construction of our method. Experimental WMT2014 English-French, and WMT2016 English-German and English-Russian translation tasks revealed that our method outperforms the best prior systems by more than 3 BLEU points.
Multilingual neural machine translation (NMT), which translates multiple languages using a single model, is of great practical importance due to its advantages in simplifying the training process, reducing online maintenance costs, and enhancing low-resource and zero-shot translation. Given there are thousands of languages in the world and some of them are very different, it is extremely burdensome to handle them all in a single model or use a separate model for each language pair. Therefore, given a fixed resource budget, e.g., the number of models, how to determine which languages should be supported by one model is critical to multilingual NMT, which, unfortunately, has been ignored by previous work. In this work, we develop a framework that clusters languages into different groups and trains one multilingual model for each cluster. We study two methods for language clustering: (1) using prior knowledge, where we cluster languages according to language family, and (2) using language embedding, in which we represent each language by an embedding vector and cluster them in the embedding space. In particular, we obtain the embedding vectors of all the languages by training a universal neural machine translation model. Our experiments on 23 languages show that the first clustering method is simple and easy to understand but leading to suboptimal translation accuracy, while the second method sufficiently captures the relationship among languages well and improves the translation accuracy for almost all the languages over baseline methods
Language coverage bias, which indicates the content-dependent differences between sentence pairs originating from the source and target languages, is important for neural machine translation (NMT) because the target-original training data is not well exploited in current practice. By carefully designing experiments, we provide comprehensive analyses of the language coverage bias in the training data, and find that using only the source-original data achieves comparable performance with using full training data. Based on these observations, we further propose two simple and effective approaches to alleviate the language coverage bias problem through explicitly distinguishing between the source- and target-original training data, which consistently improve the performance over strong baselines on six WMT20 translation tasks. Complementary to the translationese effect, language coverage bias provides another explanation for the performance drop caused by back-translation. We also apply our approach to both back- and forward-translation and find that mitigating the language coverage bias can improve the performance of both the two representative data augmentation methods and their tagged variants.
To improve the performance of Neural Machine Translation~(NMT) for low-resource languages~(LRL), one effective strategy is to leverage parallel data from a related high-resource language~(HRL). However, multilingual data has been found more beneficial for NMT models that translate from the LRL to a target language than the ones that translate into the LRLs. In this paper, we aim to improve the effectiveness of multilingual transfer for NMT models that translate emph{into} the LRL, by designing a better decoder word embedding. Extending upon a general-purpose multilingual encoding method Soft Decoupled Encoding~citep{SDE}, we propose DecSDE, an efficient character n-gram based embedding specifically designed for the NMT decoder. Our experiments show that DecSDE leads to consistent gains of up to 1.8 BLEU on translation from English to four different languages.