A weight normalization procedure, commonly called pushing, is introduced for weighted tree automata (wta) over commutative semifields. The normalization preserves the recognized weighted tree language even for nondeterministic wta, but it is most useful for bottom-up deterministic wta, where it can be used for minimization and equivalence testing. In both applications a careful selection of the weights to be redistributed followed by normalization allows a reduction of the general problem to the corresponding problem for bottom-up deterministic unweighted tree automata. This approach was already successfully used by Mohri and Eisner for the minimization of deterministic weighted string automata. Moreover, the new equivalence test for two wta $M$ and $M$ runs in time $mathcal O((lvert M rvert + lvert Mrvert) cdot log {(lvert Qrvert + lvert Qrvert)})$, where $Q$ and $Q$ are the states of $M$ and $M$, respectively, which improves the previously best run-time $mathcal O(lvert M rvert cdot lvert Mrvert)$.