No Arabic abstract
In this paper, we study the influence of the mortality trade-off in a nonlocal reaction-diffusion-mutation equation that we introduce to model the invasion of cane toads in Australia. This model is built off of one that has attracted attention recently, in which the population of toads is structured by a phenotypical trait that governs the spatial diffusion. We are concerned with the case when the diffusivity can take unbounded values and the mortality trade-off depends only on the trait variable. Depending on the rate of increase of the penalization term, we obtain the rate of spreading of the population. We identify two regimes, an acceleration regime when the penalization is weak and a linear spreading regime when the penalization is strong. While the development of the model comes from biological principles, the bulk of the article is dedicated to the mathematical analysis of the model, which is very technical.
We study the asymptotic spreading of Kolmogorov-Petrovsky-Piskunov (KPP) fronts in heterogeneous shifting habitats, with any number of shifting speeds, by further developing the method based on the theory of viscosity solutions of Hamilton-Jacobi equations. Our framework addresses both reaction-diffusion equation and integro-differential equations with a distributed time-delay. The latter leads to a class of limiting equations of Hamilton-Jacobi-type depending on the variable $x/t$ and in which the time and space derivatives are coupled together. We will first establish uniqueness results for these Hamilton-Jacobi equations using elementary arguments, and then characterize the spreading speed in terms of a reduced equation on a one-dimensional domain in the variable $s=x/t$. In terms of the standard Fisher-KPP equation, our results leads to a new class of asymptotically homogeneous environments which share the same spreading speed with the corresponding homogeneous environments.
We establish spreading properties of the Lotka-Volterra competition-diffusion system. When the initial data vanish on a right half-line, we derive the exact spreading speeds and prove the convergence to homogeneous equilibrium states between successive invasion fronts. Our method is inspired by the geometric optics approach for Fisher-KPP equation due to Freidlin, Evans and Souganidis. Our main result settles an open question raised by Shigesada et al. in 1997, and shows that one of the species spreads to the right with a nonlocally pulled front.
This is part two of our study on the spreading properties of the Lotka-Volterra competition-diffusion systems with a stable coexistence state. We focus on the case when the initial data are exponential decaying. By establishing a comparison principle for Hamilton-Jacobi equations, we are able to apply the Hamilton-Jacobi approach for Fisher-KPP equation due to Freidlin, Evans and Souganidis. As a result, the exact formulas of spreading speeds and their dependence on initial data are derived. Our results indicate that sometimes the spreading speed of the slower species is nonlocally determined. Connections of our results with the traveling profile due to Tang and Fife, as well as the more recent spreading result of Girardin and Lam, will be discussed.
With great theoretical and practical significance, identifying the node spreading influence of complex network is one of the most promising domains. So far, various topology-based centrality measures have been proposed to identify the node spreading influence in a network. However, the node spreading influence is a result of the interplay between the network topology structure and spreading dynamics. In this paper, we build up the systematic method by combining the network structure and spreading dynamics to identify the node spreading influence. By combining the adjacent matrix $A$ and spreading parameter $beta$, we theoretical give the node spreading influence with the eigenvector of the largest eigenvalue. Comparing with the Susceptible-Infected-Recovered (SIR) model epidemic results for four real networks, our method could identify the node spreading influence more accurately than the ones generated by the degree, K-shell and eigenvector centrality. This work may provide a systematic method for identifying node spreading influence.
The spreading of bacterial populations is central to processes in agriculture, the environment, and medicine. However, existing models of spreading typically focus on cells in unconfined settings--despite the fact that many bacteria inhabit complex and crowded environments, such as soils, sediments, and biological tissues/gels, in which solid obstacles confine the cells and thereby strongly regulate population spreading. Here, we develop an extended version of the classic Keller-Segel model of bacterial spreading that incorporates the influence of confinement in promoting both cell-solid and cell-cell collisions. Numerical simulations of this extended model demonstrate how confinement fundamentally alters the dynamics and morphology of spreading bacterial populations, in good agreement with recent experimental results. In particular, with increasing confinement, we find that cell-cell collisions increasingly hinder the initial formation and the long-time propagation speed of chemotactic pulses. Moreover, also with increasing confinement, we find that cellular growth and division plays an increasingly dominant role in driving population spreading--eventually leading to a transition from chemotactic spreading to growth-driven spreading via a slower, jammed front. This work thus provides a theoretical foundation for further investigations of the influence of confinement on bacterial spreading. More broadly, these results help to provide a framework to predict and control the dynamics of bacterial populations in complex and crowded environments.