Do you want to publish a course? Click here

Task-based parallelization of an implicit kinetic scheme

76   0   0.0 ( 0 )
 Added by Philippe Helluy
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we present and implement the Palindromic Discontinuous Galerkin (PDG) method in dimensions higher than one. The method has already been exposed and tested in [4] in the one-dimensional context. The PDG method is a general implicit high order method for approximating systems of conservation laws. It relies on a kinetic interpretation of the conservation laws containing stiff relaxation terms. The kinetic system is approximated with an asymptotic-preserving high order DG method. We describe the parallel implementation of the method, based on the StarPU runtime library. Then we apply it on preliminary test cases.



rate research

Read More

We put forward and analyze an explicit finite difference scheme for the Camassa-Holm shallow water equation that can handle general $H^1$ initial data and thus peakon-antipeakon interactions. Assuming a specified condition restricting the time step in terms of the spatial discretization parameter, we prove that the difference scheme converges strongly in $H^1$ towards a dissipative weak solution of Camassa-Holm equation.
We consider nonlinear hyperbolic conservation laws, posed on a differential (n+1)-manifold with boundary referred to as a spacetime, and in which the flux is defined as a flux field of n-forms depending on a parameter (the unknown variable). We introduce a formulation of the initial and boundary value problem which is geometric in nature and is more natural than the vector field approach recently developed for Riemannian manifolds. Our main assumption on the manifold and the flux field is a global hyperbolicity condition, which provides a global time-orientation as is standard in Lorentzian geometry and general relativity. Assuming that the manifold admits a foliation by compact slices, we establish the existence of a semi-group of entropy solutions. Moreover, given any two hypersurfaces with one lying in the future of the other, we establish a contraction property which compares two entropy solutions, in a (geometrically natural) distance equivalent to the L1 distance. To carry out the proofs, we rely on a new version of the finite volume method, which only requires the knowledge of the given n-volume form structure on the (n+1)-manifold and involves the {sl total flux} across faces of the elements of the triangulations, only, rather than the product of a numerical flux times the measure of that face.
In this paper, we develop an operator splitting scheme for the fractional kinetic Fokker-Planck equation (FKFPE). The scheme consists of two phases: a fractional diffusion phase and a kinetic transport phase. The first phase is solved exactly using the convolution operator while the second one is solved approximately using a variational scheme that minimizes an energy functional with respect to a certain Kantorovich optimal transport cost functional. We prove the convergence of the scheme to a weak solution to FKFPE. As a by-product of our analysis, we also establish a variational formulation for a kinetic transport equation that is relevant in the second phase. Finally, we discuss some extensions of our analysis to more complex systems.
64 - Filipa Caetano 2019
We consider a mono-dimensional two-velocities scheme used to approximate the solutions of a scalar hyperbolic conservative partial differential equation. We prove the convergence of the discrete solution toward the unique entropy solution by first estimating the supremum norm and the total variation of the discrete solution, and second by constructing a discrete kinetic entropy-entropy flux pair being given a continuous entropy-entropy flux pair of the hyperbolic system. We finally illustrate our results with numerical simulations of the advection equation and the Burgers equation.
An efficient implicit kinetic scheme is developed to solve the stationary phonon Boltzmann transport equation (BTE) based on the non-gray model including the phonon dispersion and polarization. Due to the wide range of the dispersed phonon mean free paths, the phonon transport under the non-gray model is essentially multiscale, and has to be solved differently and appropriately for varied phonon frequencies and branches. The proposed implicit kinetic scheme is composed of a microscopic iteration and a macroscopic iteration. The microscopic iteration is capable of automatically adapting with varied phonon mean free path of each phonon frequency and branch through solving the phonon BTE. The energy transfer of all phonons is gathered together by the microscopic iteration to evaluate the heat flux. The temperature field is predicted through a macroscopic heat transfer equation according to the heat flux, and the equilibrium state in the phonon BTE is also updated. The combination of the phonon BTE solver and the macroscopic equation makes the present method very efficient in a wide length scale. Three numerical tests, including the cross-plane, in-plane and nano-porous heat transfer in silicon, validate that the present scheme can handle with the phonon dispersion and polarization correctly and predict the multiscale heat transfer phenomena efficiently in a wide range. The present method could be tens of times faster than the typical implicit DOM and keeps the same amount of the memory requirements as the Fourier solver for multiscale heat transfer problem.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا