No Arabic abstract
Globular clusters are the oldest conglomerates of stars in our Galaxy and can be useful laboratories to test theories from stellar evolution to cosmology. In this paper, we present a new method to estimate the absolute age of a globular cluster from observations of its brown dwarfs. The transition region between the end of the main sequence and the brown dwarf regime is characterized by a dearth of objects as function of magnitude. The brightest of the cooling brown dwarfs is easily identified by an increase in density in the color-magnitude diagram as you go fainter in magnitudes, and these brightest brown dwarfs get fainter with age. By identifying the brightest brown dwarfs, it is thus possible to determine the age of a globular cluster within a 1 Gyr precision with four-sigma confidence. This new method, which is independent of current methods of age estimation and which does not rely on the knowledge of the clusters distance from Earth, will become feasible thanks to the high spatial resolution and incredible infrared sensitivity of the James Webb Space Telescope.
We present the result of our investigation on the impact of the low Solar abundance of Asplund and collaborators (2004) on the derived ages for the oldest star clusters based on isochrone fittings. We have constructed new stellar models and corresponding isochrones using this new solar mixture with a proper Solar calibration. We have found that the use of the Asplund et al. (2004) metallicity causes the typical ages for old globular clusters in the Milky Way to be increased roughly by 10%. Although this may appear small, it has a significant impact on the interpretation for the formation epoch of Milky Way globular clusters. The Asplund et al. (2004) abundance may not necessarily threaten the current concordance cosmology but would suggest that Milky Way globular clusters formed before the reionization and before the main galaxy body starts to build up. This is in contrast to the current understanding on the galaxy formation.
We present an analysis of the second epoch HST WFC3 F110W near-Infrared (NIR) imaging data of the globular cluster M4. The new dataset suggests that one of the previously suggested four brown dwarf candidates in this cluster is indeed a high-probability cluster member. The position of this object in the NIR colour magnitude diagrams (CMDs) is in the white dwarf/brown dwarf area. The source is too faint to be a low-mass main sequence star, but, according to theoretical considerations, also most likely somewhat too bright to be a bona-fide brown dwarf. Since we know that the source is a cluster member, we determined a new optical magnitude estimate at the position the source should have in the optical image. This new estimate places the source closer to the white dwarf sequence in the optical-NIR CMD and suggests that it might be a very cool (T_eff < 4500 K) white dwarf at the bottom of the white dwarf cooling sequence in M4, or a white dwarf/brown dwarf binary. We cannot entirely exclude the possibility that the source is a very massive, bright brown dwarf, or a very low-mass main sequence star, however, we conclude that we still have not convincingly detected a brown dwarf in a globular cluster, but we expect to be very close to the start of the brown dwarf cooling sequence in this cluster. We also note that the main sequence ends at F110W approx.22.5 mag in the proper-motion cleaned CMDs, where completeness is still high.
We present an analysis of deep HST/WFC3 near-IR (NIR) imaging data of the globular cluster M4. The best-photometry NIR colour-magnitude diagram (CMD) clearly shows the main sequence extending towards the expected end of the Hydrogen-burning limit and going beyond this point towards fainter sources. The white dwarf sequence can be identified. As such, this is the deepest NIR CMD of a globular cluster to date. Archival HST optical data were used for proper-motion cleaning of the CMD and for distinguishing the white dwarfs (WDs) from brown dwarf (BD) candidates. Detection limits in the NIR are around F110W approx 26.5 mag and F160W approx27 mag, and in the optical around F775W approx 28 mag. Comparing our observed CMDs with theoretical models, we conclude that we have reached beyond the H-burning limit in our NIR CMD and are probably just above or around this limit in our optical-NIR CMDs. Thus, any faint NIR sources that have no optical counterpart are potential BD candidates, since the optical data are not deep enough to detect them. We visually inspected the positions of NIR sources which are fainter than the H-burning limit in F110W and for which the optical photometry did not return a counterpart. We found in total five sources for which we did not get an optical measurement. For four of these five sources, a faint optical counterpart could be visually identified, and an upper optical magnitude was estimated. Based on these upper optical magnitude limits, we conclude that one source is likely a WD, one source could either be a WD or BD candidate, and the remaining two sources agree with being BD candidates. For only one source no optical counterpart could be detected, which makes this source a good BD candidate. We conclude that we found in total four good BD candidates.
We present new 890 $mu m$ continuum ALMA observations of 5 brown dwarfs (BDs) with infrared excess in Lupus I and III -- which, in combination with 4 BDs previously observed, allowed us to study the mm properties of the full known BD disk population of one star-forming region. Emission is detected in 5 out of the 9 BD disks. Dust disk mass, brightness profiles and characteristic sizes of the BD population are inferred from continuum flux and modeling of the observations. Only one source is marginally resolved, allowing for the determination of its disk characteristic size. We conduct a demographic comparison between the properties of disks around BDs and stars in Lupus. Due to the small sample size, we cannot confirm or disprove if the disk mass over stellar mass ratio drops for BDs, as suggested for Ophiuchus. Nevertheless, we find that all detected BD disks have an estimated dust mass between 0.2 and 3.2 $M_{bigoplus}$; these results suggest that the measured solid masses in BD disks can not explain the observed exoplanet population, analogous to earlier findings on disks around more massive stars. Combined with the low estimated accretion rates, and assuming that the mm-continuum emission is a reliable proxy for the total disk mass, we derive ratios of $dot{M}_{mathrm{acc}} / M_{mathrm{disk}}$ significantly lower than in disks around more massive stars. If confirmed with more accurate measurements of disk gas masses, this result could imply a qualitatively different relationship between disk masses and inward gas transport in BD disks.
We present the initial results from a survey for planetary-mass brown dwarfs in the Taurus star-forming region. We have identified brown dwarf candidates in Taurus using proper motions and photometry from several ground- and space-based facilities. Through spectroscopy of some of the more promising candidates, we have found 18 new members of Taurus. They have spectral types ranging from mid M to early L and they include the four faintest known members in extinction-corrected K_s, which should have masses as low as ~4-5 M_Jup according to evolutionary models. Two of the coolest new members (M9.25, M9.5) have mid-IR excesses that indicate the presence of disks. Two fainter objects with types of M9-L2 and M9-L3 also have red mid-IR colors relative to photospheres at <=L0, but since the photospheric colors are poorly defined at >L0, it is unclear whether they have excesses from disks. We also have obtained spectra of candidate members of the IC 348 and NGC 1333 clusters in Perseus that were identified by Luhman et al. (2016). Eight candidates are found to be probable members, three of which are among the faintest and least-massive known members of the clusters (~5 M_Jup).