No Arabic abstract
We present a simplified yet sophisticated variation to localised surface plasmon resonance spectroscopy, which makes use of naked or non-functionalised, nanoparticle templates. These nanoparticle templates, produced with a rapid and scalable process, namely laser annealing, were used as a highly sensitive surface sensor to monitor the adsorption of both metallic lead and a lead salt from aqueous solutions, showing a measurable optical response due to a surface abundance of lead as low as 100 ppm from 0.3 ml of Pb2SO4 solutions, with concentrations less than 20 ppm. This proposed method enables the end user to rapidly assess the surface abundance of lead from a simple optical reflectance measurement and could serve as a platform for in situ analysis within water filtration and cleaning systems.
We present here an experimental set-up to perform simultaneously measurements of surface plasmon resonance (SPR) and X-ray absorption spectroscopy (XAS) in a synchrotron beamline. The system allows measuring in situ and in real time the effect of X-ray irradiation on the SPR curves to explore the interaction of X-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to detect the changes in the electronic configuration of thin films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be carried out. The relative variations in the SPR and XAS spectra that can be detected with this set-up ranges from 10-3 to 10-5, depending on the particular experiment.
Tunability of the surface plasmon resonance wavelength is demonstrated by varying the thickness of Al2O3 spacer layer inserted between the graphene and nanoparticles. By varying the spacer layer thickness from 0.3 to 1.8 nm, the resonance wavelength is shifted from 583 to 566 nm. The shift is due to a change in the electromagnetic field coupling strength between the localized surface plasmons excited in the gold nanoparticles and a single layer graphene film. In contrast, when the graphene film is absent from the system, no noticeable shift in the resonance wavelength is observed upon varying the spacer thickness.
We consider a generation of two-particle quantum states in the process of spontaneous parametric down-conversion of light by a dielectric nanoparticle with $chi^{(2)}$ response. As a particular example, we study the generation of surface plasmon-polariton pairs with a ${rm GaAs}$ nanoparticle located at the silver-air interface. We show that for certain excitation geometries, ${rm N00N}$-states of surface plasmon-polariton pairs could be obtained. The effect can be physically interpreted as a result of quantum interference between pairs of induced sources, each emitting either signal or idler plasmon. We then relate the resulting ${rm N00N}$-pattern to the general symmetry properties of dyadic Greens function of a dipole emitter exciting surface waves. It renders the considered effect as a general way towards a robust generation of ${rm N00N}$-states of surface waves using spontaneous parametric down-conversion in $chi^{(2)}$ nanoparticles.
Quantum sensors based on nitrogen-vacancy centers in diamond have emerged as a promising detection modality for nuclear magnetic resonance (NMR) spectroscopy owing to their micron-scale detection volume and non-inductive based detection. A remaining challenge is to realize sufficiently high spectral resolution and concentration sensitivity for multidimensional NMR analysis of picoliter sample volumes. Here, we address this challenge by spatially separating the polarization and detection phases of the experiment in a microfluidic platform. We realize a spectral resolution of 0.65 +/- 0.05 Hz, an order-of-magnitude improvement over previous diamond NMR studies. We use the platform to perform two-dimensional correlation spectroscopy of liquid analytes within an effective ~20 picoliter detection volume. The use of diamond quantum sensors as in-line microfluidic NMR detectors is a significant step towards applications in mass-limited chemical analysis and single cell biology.
We conduct a comprehensive set of tests of performance of surface coils used for nuclear magnetic resonance (NMR) study of quasi 2-dimensional samples. We report ${^{115} rm{In}}$ and ${^{31} rm{P}}$ NMR measurements on InP, semi-conducting thin substrate samples. Surface coils of both zig-zag meander-line and concentric spiral geometries were used. We compare reception sensitivity and signal-to-noise ratio (SNR) of NMR signal obtained by using surface-type coils to that obtained by standard solenoid-type coils. As expected, we find that surface-type coils provide better sensitivity for NMR study of thin films samples. Moreover, we compare the reception sensitivity of different types of the surface coils. We identify the optimal geometry of the surface coils for a given application and/or direction of the applied magnetic field.