Do you want to publish a course? Click here

Post-collapse perturbation theory in 1D cosmology -- beyond shell-crossing

71   0   0.0 ( 0 )
 Added by Atsushi Taruya
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a new perturbation theory (PT) treatment that can describe gravitational dynamics of large-scale structure after shell-crossing in the one-dimensional cosmological case. Starting with cold initial conditions, the motion of matter distribution follows at early stages the single-stream regime, which can, in one dimension, be described exactly by the first-order Lagrangian perturbation, i.e. the Zeldovich solution. However, the single-stream flow no longer holds after shell-crossing and a proper account of the multi-stream flow is essential for post-collapse dynamics. In this paper, extending previous work by Colombi (2015, MNRAS 446, 2902), we present a perturbative description for the multi-stream flow after shell-crossing in a cosmological setup. In addition, we introduce an adaptive smoothing scheme to deal with the bulk properties of phase-space structures. The filtering scales in this scheme are linked to the next-crossing time in the post-collapse region, estimated from our PT calculations. Our PT treatment combined with adaptive smoothing is illustrated in several cases. Predictions are compared to simulations and we find that post-collapse PT with adaptive smoothing reproduces the power spectrum and phase-space structures remarkably well even at small scales, where Zeldovich solution substantially deviates from simulations.



rate research

Read More

179 - Stephane Colombi 2014
We study analytically the collapse of an initially smooth, cold, self-gravitating collisionless system in one dimension. The system is described as a central S shape in phase-space surrounded by a nearly stationary halo acting locally like a harmonic background on the S. To resolve the dynamics of the S under its self-gravity and under the influence of the halo, we introduce a novel approach using post-collapse Lagrangian perturbation theory. This approach allows us to follow the evolution of the system between successive crossing times and to describe in an iterative way the interplay between the central S and the halo. Our theoretical predictions are checked against measurements in entropy conserving numerical simulations based on the waterbag method. While our post-collapse Lagrangian approach does not allow us to compute rigorously the long term behavior of the system, i.e. after many crossing times, it explains the close to power-law behavior of the projected density observed in numerical simulations. Pushing the model at late time suggests that the system could build at some point a very small flat core, but this is very speculative. This analysis shows that understanding the dynamics of initially cold systems requires a fine grained approach for a correct description of their very central part. The analyses performed here can certainly be extended to spherical symmetry.
We consider the growth of primordial dark matter halos seeded by three crossed initial sine waves of various amplitudes. Using a Lagrangian treatment of cosmological gravitational dynamics, we examine the convergence properties of a high-order perturbative expansion in the vicinity of shell-crossing, by comparing the analytical results with state-of-the-art high resolution Vlasov-Poisson simulations. Based on a quantitative exploration of parameter space, we study explicitly for the first time the convergence speed of the perturbative series, and find, in agreement with intuition, that it slows down when going from quasi one-dimensional initial conditions (one sine wave dominating) to quasi triaxial symmetry (three sine waves with same amplitude). In most cases, the system structure at collapse time is, as expected, very similar to what is obtained with simple one-dimensional dynamics, except in the quasi-triaxial regime, where the phase-space sheet presents a velocity spike. In all cases, the perturbative series exhibits a generic convergence behavior as fast as an exponential of a power-law of the order of the expansion, allowing one to numerically extrapolate it to infinite order. The results of such an extrapolation agree remarkably well with the simulations, even at shell-crossing.
The usual fluid equations describing the large-scale evolution of mass density in the universe can be written as local in the density, velocity divergence, and velocity potential fields. As a result, the perturbative expansion in small density fluctuations, usually written in terms of convolutions in Fourier space, can be written as a series of products of these fields evaluated at the same location in configuration space. Based on this, we establish a new method to numerically evaluate the 1-loop power spectrum (i.e., Fourier transform of the 2-point correlation function) with one-dimensional Fast Fourier Transforms. This is exact and a few orders of magnitude faster than previously used numerical approaches. Numerical results of the new method are in excellent agreement with the standard quadrature integration method. This fast model evaluation can in principle be extended to higher loop order where existing codes become painfully slow. Our approach follows by writing higher order corrections to the 2-point correlation function as, e.g., the correlation between two second-order fields or the correlation between a linear and a third-order field. These are then decomposed into products of correlations of linear fields and derivatives of linear fields. The method can also be viewed as evaluating three-dimensional Fourier space convolutions using products in configuration space, which may also be useful in other contexts where similar integrals appear.
In this work, we study the formation and evolution of dark matter halos by means of the spherical infall model with shell-crossing. We present a framework to tackle this effect properly based on the numerical follow-up, with time, of that individual shell of matter that contains always the same fraction of mass with respect to the total mass. In this first step, we do not include angular momentum, velocity dispersion or triaxiality. Within this framework - named as the Spherical Shell Tracker (SST) - we investigate the dependence of the evolution of the halo with virial mass, with the adopted mass fraction of the shell, and for different cosmologies. We find that our results are very sensitive to a variation of the halo virial mass or the mass fraction of the shell that we consider. However, we obtain a negligible dependence on cosmology. Furthermore, we show that the effect of shell-crossing plays a crucial role in the way that the halo reaches the stabilization in radius and the virial equilibrium. We find that the values currently adopted in the literature for the actual density contrast at the moment of virialization, delta_vir, may not be accurate enough. In this context, we stress the problems related to the definition of a virial mass and a virial radius for the halo. The question of whether the results found here may be obtained by tracking the shells with an analytic approximation remains to be explored.
Inflationary perturbations are approximately Gaussian and deviations from Gaussianity are usually calculated using in-in perturbation theory. This method, however, fails for unlikely events on the tail of the probability distribution: in this regime non-Gaussianities are important and perturbation theory breaks down for $|zeta| gtrsim |f_{rm scriptscriptstyle NL}|^{-1}$. In this paper we show that this regime is amenable to a semiclassical treatment, $hbar to 0$. In this limit the wavefunction of the Universe can be calculated in saddle-point, corresponding to a resummation of all the tree-level Witten diagrams. The saddle can be found by solving numerically the classical (Euclidean) non-linear equations of motion, with prescribed boundary conditions. We apply these ideas to a model with an inflaton self-interaction $propto lambda dotzeta^4$. Numerical and analytical methods show that the tail of the probability distribution of $zeta$ goes as $exp(-lambda^{-1/4}zeta^{3/2})$, with a clear non-perturbative dependence on the coupling. Our results are relevant for the calculation of the abundance of primordial black holes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا