Do you want to publish a course? Click here

Spectropolarimetry of the 2012 outburst of SN 2009ip: a bi-polar explosion in a dense, disk-like CSM

290   0   0.0 ( 0 )
 Added by Emma Reilly
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a sequence of eight spectropolarimetric observations monitoring the geometric evolution of the late phase of the major 2012 outburst of SN 2009ip. These were acquired with the FORS2 polarimeter mounted on ESO VLT. The continuum was polarised at 0.3-0.8 per cent throughout the observations, showing that the photosphere deviated substantially from spherical symmetry by 10-15 per cent. Significant line polarisation is detected for both hydrogen and helium at high velocities. The similarity in the polarised signal between these elements indicates that they form in the same location in the ejecta. The line polarisation (p$sim$1-1.5 per cent) at low velocities revealed the presence of a highly-aspherical hydrogen and helium rich circumstellar medium (CSM). Monte Carlo simulations of the observed polarimetry were performed in an effort to constrain the shape of the CSM. The simulations imply that the polarimetry can be understood within the framework of a disk-like CSM inclined by 14$pm$2 degrees out of the line of sight, obscuring the photosphere only at certain epochs. The varying temporal evolution of polarisation at high and low velocities indicated that the fast-moving ejecta expanded with a preferred direction orthogonal to that of the CSM.



rate research

Read More

88 - C. D. Bochenek 2017
X-ray emission is one of the signposts of circumstellar interaction in supernovae (SNe), but until now, it has been observed only in core-collapse SNe. The level of thermal X-ray emission is a direct measure of the density of the circumstellar medium (CSM), and the absence of X-ray emission from Type Ia SNe has been interpreted as a sign of a very low density CSM. In this paper, we report late-time (500--800 days after discovery) X-ray detections of SN 2012ca in {it Chandra} data. The presence of hydrogen in the initial spectrum led to a classification of Type Ia-CSM, ostensibly making it the first SN~Ia detected with X-rays. Our analysis of the X-ray data favors an asymmetric medium, with a high-density component which supplies the X-ray emission. The data suggest a number density $> 10^8$ cm$^{-3}$ in the higher-density medium, which is consistent with the large observed Balmer decrement if it arises from collisional excitation. This is high compared to most core-collapse SNe, but it may be consistent with densities suggested for some Type IIn or superluminous SNe. If SN 2012ca is a thermonuclear SN, the large CSM density could imply clumps in the wind, or a dense torus or disk, consistent with the single-degenerate channel. A remote possibility for a core-degenerate channel involves a white dwarf merging with the degenerate core of an asymptotic giant branch star shortly before the explosion, leading to a common envelope around the SN.
Supernova (SN) 2016bdu is an unusual transient resembling SN 2009ip. SN 2009ip-like events are characterized by a long-lasting phase of erratic variability which ends with two luminous outbursts a few weeks apart. The second outburst is significantly more luminous (about 3 mag) than the first. In the case of SN 2016bdu, the first outburst (Event A) reached an absolute magnitude M(r) ~ -15.3 mag, while the second one (Event B) occurred over one month later and reached M(r) ~ -18 mag. By inspecting archival data, a faint source at the position of SN 2016bdu is detectable several times in the past few years. We interpret these detections as signatures of a phase of erratic variability, similar to that experienced by SN 2009ip between 2008 and mid-2012, and resembling the currently observed variability of the luminous blue variable SN 2000ch in NGC 3432. Spectroscopic monitoring of SN 2016bdu during the second peak initially shows features typical of a SN IIn. One month after the Event B maximum, the spectra develop broad Balmer lines with P Cygni profiles and broad metal features. At these late phases, the spectra resemble those of a typical Type II SN. All members of this SN 2009ip-like group are remarkably similar to the Type IIn SN 2005gl. For this object, the claim of a terminal SN explosion is supported by the disappearance of the progenitor star. The similarity with SN 2005gl suggests that all members of this family may finally explode as genuine SNe, although the unequivocal detection of nucleosynthesised elements in their nebular spectra is still missing.
We present multiple spectropolarimetric observations of the nearby Type Ia supernova (SN) 2011fe in M101, obtained before, during, and after the time of maximum apparent visual brightness. The excellent time coverage of our spectropolarimetry has allowed better monitoring of the evolution of polarization features than is typical, which has allowed us new insight into the nature of normal SNe Ia. SN 2011fe exhibits time-dependent polarization in both the continuum and strong absorption lines. At early epochs, red wavelengths exhibit a degree of continuum polarization of up to 0.4%, likely indicative of a mild asymmetry in the electron-scattering photosphere. This behavior is more common in sub-luminous SNe Ia than in normal events, such as SN2011fe. The degree of polarization across a collection of absorption lines varies dramatically from epoch to epoch. During the earliest epoch a $lambda$4600-5000 AA complex of absorption lines shows enhanced polarization at a different position angle than the continuum. We explore the origin of these features, presenting a few possible interpretations, without arriving at a single favored ion. During two epochs near maximum, the dominant polarization feature is associated with the Si{sc ii} $lambda$6355 AA absorption line. This is common for SNeIa, but for SN2011fe the polarization of this feature increases after maximum light, whereas for other SNeIa, that polarization feature was strongest before maximum light.
We present seven epochs of spectropolarimetry of the Type IIb supernova (SN) 2011dh in M51, spanning 86 days of its evolution. The first epoch was obtained 9 days after the explosion, when the photosphere was still in the depleted hydrogen layer of the stripped-envelope progenitor. Continuum polarization is securely detected at the level of P~0.5% through day 14 and appears to diminish by day 30, which is different from the prevailing trends suggested by studies of other core-collapse SNe. Time-variable modulations in P and position angle are detected across P-Cygni line features. H-alpha and HeI polarization peak after 30 days and exhibit position angles roughly aligned with the earlier continuum, while OI and CaII appear to be geometrically distinct. We discuss several possibilities to explain the evolution of the continuum and line polarization, including the potential effects of a tidally deformed progenitor star, aspherical radioactive heating by fast-rising plumes of Ni-56 from the core, oblique shock breakout, or scattering by circumstellar material. While these possibilities are plausible and guided by theoretical expectations, they are not unique solutions to the data. The construction of more detailed hydrodynamic and radiative-transfer models that incorporate complex aspherical geometries will be required to further elucidate the nature of the polarized radiation from SN 2011dh and other Type IIb supernovae.
212 - M. Fraser , M. Magee , R. Kotak 2013
Using imaging from the Pan-STARRS1 survey, we identify a precursor outburst at epochs 287 and 170 days prior to the reported explosion of the purported Type IIn supernova (SN) 2011ht. In the Pan-STARRS data, a source coincident with SN 2011ht is detected exclusively in the zps and yps-bands. An absolute magnitude of M$_zsimeq$-11.8 suggests that this was an outburst of the progenitor star. Unfiltered, archival Catalina Real Time Transient survey images also reveal a coincident source from at least 258 to 138 days before the main event. We suggest that the outburst is likely to be an intrinsically red eruption, although we cannot conclusively exclude a series of erratic outbursts which were observed only in the redder bands by chance. This is only the fourth detection of an outburst prior to a claimed SN, and lends credence to the possibility that many more interacting transients have pre-explosion outbursts, which have been missed by current surveys.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا