Do you want to publish a course? Click here

Amplitude analysis of $D^{0} rightarrow K^{-} pi^{+} pi^{+} pi^{-}$

88   0   0.0 ( 0 )
 Added by Yu Lu
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We present an amplitude analysis of the decay $D^{0} rightarrow K^{-} pi^{+} pi^{+} pi^{-}$ based on a data sample of 2.93 ${mbox{,fb}^{-1}}$ acquired by the BESIII detector at the $psi(3770)$ resonance. With a nearly background free sample of about 16000 events, we investigate the substructure of the decay and determine the relative fractions and the phases among the different intermediate processes. Our amplitude model includes the two-body decays $D^{0} rightarrow bar{K}^{*0}rho^{0}$, $D^{0} rightarrow K^{-}a_{1}^{+}(1260)$ and $D^{0} rightarrow K_{1}^{-}(1270)pi^{+}$, the three-body decays $D^{0} rightarrow bar{K}^{*0}pi^{+}pi^{-}$ and $D^{0} rightarrow K^{-}pi^{+}rho^{0}$, as well as the four-body decay $D^{0} rightarrow K^{-}pi^{+}pi^{+}pi^{-}$. The dominant intermediate process is $D^{0} rightarrow K^{-}a_{1}^{+}(1260)$, accounting for a fit fraction of $54.6%$.



rate research

Read More

The decay $D^{+} rightarrow K_{S}^{0} pi^{+} pi^{+} pi^{-}$ is studied with an amplitude analysis using a data set of 2.93${mbox{,fb}^{-1}}$ of $e^+e^+$ collisions at the $psi(3770)$ peak accumulated by the BESIII detector. Intermediate states and non-resonant components, and their relative fractions and phases have been determined. The significant amplitudes, which contribute to the model that best fits the data, are composed of five quasi-two-body decays $ K_{S}^{0} a_{1}(1260)^{+}$, $ bar{K}_{1}(1270)^{0} pi^{+}$ $ bar{K}_{1}(1400)^{0} pi^{+}$, $ bar{K}_{1}(1650)^{0} pi^{+}$, and $ bar{K}(1460)^{0} pi^{+}$, a three-body decays $K_{S}^{0}pi^{+}rho^{0}$, as well as a non-resonant component $ K_{S}^{0}pi^{+}pi^{+}pi^{-}$. The dominant amplitude is $ K_{S}^{0} a_{1}(1260)^{+}$, with a fit fraction of $(40.3pm2.1pm2.9)%$, where the first and second uncertainties are statistical and systematic, respectively.
Using 6.32 fb$^{-1}$ of $e^+e^-$ collision data collected by the BESIII detector at the center-of-mass energies between 4.178 and 4.226 GeV,~an amplitude analysis of the $D^{+}_{s}rightarrow K^{0}_{S}K^{-}pi^{+}pi^{+}$ decays is performed for the first time to determine the intermediate-resonant contributions. The dominant component is the $D_s^+ to K^*(892)^+overline{K}^*(892)^0$ decay with a fraction of $(40.6pm2.9_{rm stat}pm4.9_{rm sys})$%. Our results of the amplitude analysis are used to obtain a more precise measurement of the branching fraction of the $D^{+}_{s}rightarrow K^{0}_{S}K^{-}pi^{+}pi^{+}$ decay, which is determined to be $(1.46pm0.05_{rm stat}pm0.05_{rm sys}$)%.
The Dalitz plot distribution of $B^0 rightarrow bar{D}^0 K^+ pi^-$ decays is studied using a data sample corresponding to $3.0rm{fb}^{-1}$ of $pp$ collision data recorded by the LHCb experiment during 2011 and 2012. The data are described by an amplitude model that contains contributions from intermediate $K^*(892)^0$, $K^*(1410)^0$, $K^*_2(1430)^0$ and $D^*_2(2460)^-$ resonances. The model also contains components to describe broad structures, including the $K^*_0(1430)^0$ and $D^*_0(2400)^-$ resonances, in the $Kpi$ S-wave and the $Dpi$ S- and P-waves. The masses and widths of the $D^*_0(2400)^-$ and $D^*_2(2460)^-$ resonances are measured, as are the complex amplitudes and fit fractions for all components included in the amplitude model. The model obtained will be an integral part of a future determination of the angle $gamma$ of the CKM quark mixing matrix using $B^0 rightarrow D K^+ pi^-$ decays.
An analysis of the decays of $B^mp rightarrow D K^mp$ and $B^mp rightarrow D pi^mp $ is presented in which the $D$ meson is reconstructed in the three-body final states $K^mp pi^pm pi^0$, $pi^+ pi^- pi^0$ and $K^+ K^- pi^0$. Using data from LHCb corresponding to an integrated luminosity of 3.0 fb$^{-1}$ of $pp$ collisions, measurements of several $CP$ observables are performed. First observations are obtained of the suppressed ADS decay $B^mp rightarrow [pi^mp K^pm pi^0]_D pi^mp$ and the quasi-GLW decay $B^mp rightarrow [K^+ K^- pi^0]_D pi^mp$. The results are interpreted in the context of the unitarity triangle angle $gamma$ and related parameters.
A search for $CP$ violation in the Cabibbo-suppressed $D^0 rightarrow K^+ K^- pi^+ pi^-$ decay mode is performed using an amplitude analysis. The measurement uses a sample of $pp$ collisions recorded by the LHCb experiment during 2011 and 2012, corresponding to an integrated luminosity of 3.0 fb$^{-1}$. The $D^0$ mesons are reconstructed from semileptonic $b$-hadron decays into $D^0mu^- X$ final states. The selected sample contains more than 160000 signal decays, allowing the most precise amplitude modelling of this $D^0$ decay to date. The obtained amplitude model is used to perform the search for $CP$ violation. The result is compatible with $CP$ symmetry, with a sensitivity ranging from 1% to 15% depending on the amplitude considered.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا