No Arabic abstract
Babson and Steingr{i}msson introduced generalized permutation patterns and showed that most of the Mahonian statistics in the literature can be expressed by the combination of generalized pattern functions. Particularly, they defined a new Mahonian statistic in terms of generalized pattern functions, which is denoted $stat$. Given a permutation $pi$, let $des(pi)$ denote the descent number of $pi$ and $maj(pi)$ denote the major index of $pi$. Babson and Steingr{i}msson conjectured that $(des,stat)$ and $(des,maj)$ are equidistributed on $S_n$. Foata and Zeilberger settled this conjecture using q-enumeration, generating functions and Maple packages ROTA and PERCY. Later, Burstein provided a bijective proof of a refinement of this conjecture. In this paper, we give a new bijective proof of this conjecture.
Amdeberhan conjectured that the number of $(s,s+2)$-core partitions with distinct parts for an odd integer $s$ is $2^{s-1}$. This conjecture was first proved by Yan, Qin, Jin and Zhou, then subsequently by Zaleski and Zeilberger. Since the formula for the number of such core partitions is so simple one can hope for a bijective proof. We give the first direct bijective proof of this fact by establishing a bijection between the set of $(s, s+2)$-core partitions with distinct parts and a set of lattice paths.
A typical decomposition question asks whether the edges of some graph $G$ can be partitioned into disjoint copies of another graph $H$. One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree. It says that any tree with $n$ edges packs $2n+1$ times into the complete graph $K_{2n+1}$. In this paper, we prove this conjecture for large $n$.
We consider pairs of a set-valued column-strict tableau and a reverse plane partition of the same shape. We introduce algortithms for them, which implies a bijective proof for the finite sum Cauchy identity for Grothendieck polynomials and dual Grothendieck polynomials.
We prove a conjecture of Ohba which says that every graph $G$ on at most $2chi(G)+1$ vertices satisfies $chi_ell(G)=chi(G)$.
In the context of the (generalized) Delta Conjecture and its compositional form, DAdderio, Iraci, and Wyngaerd recently stated a conjecture relating two symmetric function operators, $D_k$ and $Theta_k$. We prove this Theta Operator Conjecture, finding it as a consequence of the five-term relation of Mellit and Garsia. As a result, we find surprising ways of writing the $D_k$ operators.