Do you want to publish a course? Click here

Index and Materialized View Selection in Data Warehouses

173   0   0.0 ( 0 )
 Added by Jerome Darmont
 Publication date 2017
and research's language is English
 Authors Kamel Aouiche




Ask ChatGPT about the research

The aim of this article is to present an overview of the major families of state-of-the-art index and materialized view selection methods, and to discuss the issues and future trends in data warehouse performance optimization. We particularly focus on data mining-based heuristics we developed to reduce the selection problem complexity and target the most pertinent candidate indexes and materialized views.



rate research

Read More

Materialized views and indexes are physical structures for accelerating data access that are casually used in data warehouses. However, these data structures generate some maintenance overhead. They also share the same storage space. Most existing studies about materialized view and index selection consider these structures separately. In this paper, we adopt the opposite stance and couple materialized view and index selection to take view-index interactions into account and achieve efficient storage space sharing. Candidate materialized views and indexes are selected through a data mining process. We also exploit cost models that evaluate the respective benefit of indexing and view materialization, and help select a relevant configuration of indexes and materialized views among the candidates. Experimental results show that our strategy performs better than an independent selection of materialized views and indexes.
221 - Hadj Mahboubi 2008
XML data warehouses form an interesting basis for decision-support applications that exploit complex data. However, native XML database management systems currently bear limited performances and it is necessary to design strategies to optimize them. In this paper, we propose an automatic strategy for the selection of XML materialized views that exploits a data mining technique, more precisely the clustering of the query workload. To validate our strategy, we implemented an XML warehouse modeled along the XCube specifications. We executed a workload of XQuery decision-support queries on this warehouse, with and without using our strategy. Our experimental results demonstrate its efficiency, even when queries are complex.
290 - Stephane Azefack 2008
Analytical queries defined on data warehouses are complex and use several join operations that are very costly, especially when run on very large data volumes. To improve response times, data warehouse administrators casually use indexing techniques. This task is nevertheless complex and fastidious. In this paper, we present an automatic, dynamic index selection method for data warehouses that is based on incremental frequent itemset mining from a given query workload. The main advantage of this approach is that it helps update the set of selected indexes when workload evolves instead of recreating it from scratch. Preliminary experimental results illustrate the efficiency of this approach, both in terms of performance enhancement and overhead.
162 - Hadj Mahboubi 2008
XML data warehouses form an interesting basis for decision-support applications that exploit complex data. However, native-XML database management systems (DBMSs) currently bear limited performances and it is necessary to research for ways to optimize them. In this paper, we propose a new join index that is specifically adapted to the multidimensional architecture of XML warehouses. It eliminates join operations while preserving the information contained in the original warehouse. A theoretical study and experimental results demonstrate the efficiency of our join index. They also show that native XML DBMSs can compete with XML-compatible, relational DBMSs when warehousing and analyzing XML data.
148 - Hadj Mahboubi 2008
With the multiplication of XML data sources, many XML data warehouse models have been proposed to handle data heterogeneity and complexity in a way relational data warehouses fail to achieve. However, XML-native database systems currently suffer from limited performances, both in terms of manageable data volume and response time. Fragmentation helps address both these issues. Derived horizontal fragmentation is typically used in relational data warehouses and can definitely be adapted to the XML context. However, the number of fragments produced by classical algorithms is difficult to control. In this paper, we propose the use of a k-means-based fragmentation approach that allows to master the number of fragments through its $k$ parameter. We experimentally compare its efficiency to classical derived horizontal fragmentation algorithms adapted to XML data warehouses and show its superiority.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا