Do you want to publish a course? Click here

The nature of spin excitations in the one-third magnetization plateau phase of Ba$_3$CoSb$_2$O$_9$

139   0   0.0 ( 0 )
 Added by Yoshitomo Kamiya
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetization plateaus in quantum magnets---where bosonic quasiparticles crystallize into emergent spin superlattices---are spectacular yet simple examples of collective quantum phenomena escaping classical description. While magnetization plateaus have been observed in a number of spin-1/2 antiferromagnets, the description of their magnetic excitations remains an open theoretical and experimental challenge. Here, we investigate the dynamical properties of the triangular-lattice spin-1/2 antiferromagnet Ba$_3$CoSb$_2$O$_9$ in its one-third magnetization plateau phase using a combination of nonlinear spin-wave theory and neutron scattering measurements. The agreement between our theoretical treatment and the experimental data demonstrates that magnons behave semiclassically in the plateau in spite of the purely quantum origin of the underlying magnetic structure. This allows for a quantitative determination of Ba$_3$CoSb$_2$O$_9$ exchange parameters. We discuss the implication of our results to the deviations from semiclassical behavior observed in zero-field spin dynamics of the same material and conclude they must have an intrinsic origin.

rate research

Read More

122 - J. Ma , Y. Kamiya , Tao Hong 2015
We present single-crystal neutron scattering measurements of the spin-1/2 equilateral triangular lattice antiferromagnet Ba$_3$CoSb$_2$O$_9$. Besides confirming that the Co$^{2+}$ magnetic moments lie in the ab plane for zero magnetic field, we determine all the exchange parameters of the minimal quasi-2D spin Hamiltonian, which confirms that Ba$_3$CoSb$_2$O$_9$ is an almost perfect realization of the paradigmatic model of frustrated quantum magnetism. A comparison with linear and nonlinear spin-wave theory reveals that quantum fluctuations induce a strong downward renormalization of the magnon dispersion.
101 - N. A. Fortune , Q. Huang , T. Hong 2020
Quantum fluctuations in the effective spin one-half layered structure triangular-lattice quantum Heisenberg antiferromagnet Ba$_3$CoSb$_2$O$_9$ lift the classical degeneracy of the antiferromagnetic ground state in magnetic field, producing a series of novel spin structures for magnetic fields applied within the crystallographic ab plane. Theoretically unresolved, however, are the effects of interlayer antferromagnetic coupling and transverse magnetic fields on the ground states of this system. To address these issues, we have used specific heat, neutron diffraction, thermal conductivity, and magnetic torque measurements to map out the phase diagram as a function of magnetic field intensity and orientation relative to the crystallographic ab plane. For H parallel to the ab plane, we have discovered an additional, previously unreported magnetic-field-induced phase transition at low temperature and an unexpected tetracritical point in the high field phase diagram, which - coupled with the apparent second-order nature of the phase transitions - eliminates several theoretically proposed spin structures for the high field phases. Our calorimetric measurements as a function of magnetic field orientation are in general agreement with theory for field-orientation angles close to plane parallel but diverge at angles near plane perpendicular; a predicted convergence of two phase boundaries at finite angle and a corresponding change in the order of the field induced phase transition is not observed experimentally. Our results emphasize the role of interlayer coupling in selecting and stabilizing field-induced phases, provide new guidance into the nature of the magnetic order in each phase, and reveal the need for new physics to account for the nature of magnetic ordering in this archetypal 2D spin one-half triangular lattice quantum Heisenberg antiferromagnet.
We report on thermodynamic, magnetization, and muon spin relaxation measurements of the strong spin-orbit coupled iridate Ba$_3$IrTi$_2$O$_9$, which constitutes a new frustration motif made up a mixture of edge- and corner-sharing triangles. In spite of strong antiferromagnetic exchange interaction of the order of 100~K, we find no hint for long-range magnetic order down to 23 mK. The magnetic specific heat data unveil the $T$-linear and -squared dependences at low temperatures below 1~K. At the respective temperatures, the zero-field muon spin relaxation features a persistent spin dynamics, indicative of unconventional low-energy excitations. A comparison to the $4d$ isostructural compound Ba$_3$RuTi$_2$O$_9$ suggests that a concerted interplay of compass-like magnetic interactions and frustrated geometry promotes a dynamically fluctuating state in a triangle-based iridate.
Recent experiments on the Ba$_3$XSb$_2$O$_9$ family have revealed materials that potentially realise spin- and spin-orbital liquid physics. However, the lattice structure of these materials is complicated due to the presence of charged X$^{2+}$-Sb$^{5+}$ dumbbells, with two possible orientations. To model the lattice structure, we consider a frustrated model of charged dumbbells on the triangular lattice, with long-range Coulomb interactions. We study this model using Monte Carlo simulation, and find a freezing temperature, $T_{sf frz}$, at which the simulated structure factor matches well to low-temperature x-ray diffraction data for Ba$_3$CuSb$_2$O$_9$. At $T=T_{sf frz}$ we find a complicated ``branching structure of superexchange-linked X$^{2+}$ clusters, and show that this gives a natural explanation for the presence of orphan spins. Finally we provide a plausible mechanism by which such dumbbell disorder can promote a spin-orbital resonant state with delocalised orphan spins.
Structure with orbital degeneracy is unstable toward spontaneous distortion. Such orbital correlation usually has a much higher energy scale than spins, and therefore, magnetic transition takes place at a much lower temperature, almost independently from orbital ordering. However, when the energy scales of orbitals and spins meet, there is a possibility of spin-orbital entanglement that would stabilize novel ground state such as spin-orbital liquid and random singlet state. Here we review on such a novel spin-orbital magnetism found in the hexagonal perovskite oxide Ba$_3$CuSb$_2$O$_9$, which hosts a self-organized honeycomblike short-range order of a strong Jahn-Teller ion Cu$^{2+}$. Comprehensive structural and magnetic measurements have revealed that the system has neither magnetic nor Jahn-Teller transition down to the lowest temperatures, and Cu spins and orbitals retain the hexagonal symmetry and paramagnetic state. Various macroscopic and microscopic measurements all indicate that spins and orbitals remain fluctuating down to low temperatures without freezing, forming a spin-orbital entangled liquid state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا