Do you want to publish a course? Click here

Cool DZ white dwarfs I: Identification and spectral analysis

133   0   0.0 ( 0 )
 Added by Mark Hollands
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

White dwarfs with metal lines in their spectra act as signposts for post-main sequence planetary systems. Searching the Sloan Digital Sky Survey (SDSS) data release 12, we have identified 231 cool (<9000 K) DZ white dwarfs with strong metal absorption, extending the DZ cooling sequence to both higher metal abundances, lower temperatures, and hence longer cooler ages. Of these 231 systems, 104 are previously unknown white dwarfs. Compared with previous work, our spectral fitting uses improved model atmospheres with updated line profiles and line-lists, which we use to derive effective temperatures and abundances for up to 8 elements. We also determine spectroscopic distances to our sample, identifying two halo-members with tangential space-velocities >300 kms-1. The implications of our results on remnant planetary systems are to be discussed in a separate paper.



rate research

Read More

Little is known about the incidence of magnetic fields among the coolest white dwarfs. Their spectra usually do not exhibit any absorption lines as the bound-bound opacities of hydrogen and helium are vanishingly small. Probing these stars for the presence of magnetic fields is therefore extremely challenging. However, external pollution of a cool white dwarf by, e.g., planetary debris, leads to the appearance of metal lines in its spectral energy distribution. These lines provide a unique tool to identify and measure magnetism in the coolest and oldest white dwarfs in the Galaxy. We report the identification of 7 strongly metal polluted, cool (T_eff < 8000 K) white dwarfs with magnetic field strengths ranging from 1.9 to 9.6 MG. An analysis of our larger magnitude-limited sample of cool DZ yields a lower limit on the magnetic incidence of 13+/-4 percent, noticeably much higher than among hot DA white dwarfs.
In a previous study, we analysed the spectra of 230 cool ($T_mathrm{eff}$ < 9000 K) white dwarfs exhibiting strong metal contamination, measuring abundances for Ca, Mg, Fe and in some cases Na, Cr, Ti, or Ni. Here we interpret these abundances in terms of the accretion of debris from extrasolar planetesimals, and infer parent body compositions ranging from crust-like (rich in Ca and Ti) to core-like (rich in Fe and Ni). In particular, two white dwarfs, SDSSJ0823+0546 and SDSSJ0741+3146, which show log[Fe/Ca] > 1.9 dex, and Fe to Ni ratios similar to the bulk Earth, have accreted by far the most core-like exoplanetesimals discovered to date. With cooling ages in the range 1-8 Gyr, these white dwarfs are among the oldest stellar remnants in the Milky Way, making it possible to probe the long-term evolution of their ancient planetary systems. From the decrease in maximum abundances as a function of cooling age, we find evidence that the arrival rate of material on to the white dwarfs decreases by 3 orders of magnitude over a $simeq$6.5 Gyr span in white dwarf cooling ages, indicating that the mass-reservoirs of post-main sequence planetary systems are depleted on a $simeq$1 Gyr e-folding time-scale. Finally, we find that two white dwarfs in our sample are members of wide binaries, and both exhibit atypically high abundances, thus providing strong evidence that distant binary companions can dynamically perturb white dwarf planetary systems.
We present an analysis of photometric, spectroscopic and spectropolarimetric data of the nearby, cool, magnetic DZ white dwarf PM J08186-3110. High dispersion spectra show the presence of Zeeman splitted spectral lines due to the presence of a surface average magnetic field of 92 kG. The strong magnesium and calcium lines show extended wings shaped by interactions with neutral helium in a dense, cool helium-rich atmosphere. We found that the abundance of heavy elements varied between spectra taken ten years apart but we could not establish a time-scale for these variations; such variations may be linked to surface abundance variations in the magnetized atmosphere. Finally, we show that volume limited samples reveal that about 40% of DZ white dwarfs with effective temperatures below 7000 K are magnetic.
We utilize high-resolution (R~60,000), high S/N (~100) spectroscopy of 17 cool Pleiades dwarfs to examine the confounding star-to-star scatter in the 6707 Li I line strengths in this young cluster. Our Pleiads, selected for their small projected rotational velocity and modest chromospheric emission, evince substantial scatter in the linestrengths of 6707 Li I feature that is absent in the 7699 K I resonance line. The Li I scatter is not correlated with that in the high-excitation 7774 O I feature, and the magnitude of the former is greater than the latter despite the larger temperature sensitivity of the O I feature. These results suggest that systematic errors in linestrength measurements due to blending, color (or color-based T_eff) errors, or line formation effects related to an overlying chromosphere are not the principal source of Li I scatter in our stars. There do exist analytic spot models that can produce the observed Li scatter without introducing scatter in the K I line strengths or the color-magnitude diagram. However, these models predict factor of >3 differences in abundances derived from the subordinate 6104 and resonance 6707 Li I features; we find no difference in the abundances determined from these two features. These analytic spot models also predict CN line strengths significantly larger than we observe in our spectra. The simplest explanation of the Li, K, CN, and photometric data is that there must be a real abundance component to the Pleiades Li dispersion. We suggest that this real abundance component is the manifestation of relic differences in erstwhile pre-main-sequence Li burning caused by effects of surface activity on stellar structure. We discuss observational predictions of these effects.
We report the discovery of a new, polluted, magnetic white dwarf in the Luyten survey of high-proper motion stars. High-dispersion spectra of NLTT 7547 reveal a complex heavy element line spectrum in a cool (~5 200 K) hydrogen-dominated atmosphere showing the effect of a surface averaged field of 163 kG, consistent with a 240 kG centred dipole, although the actual field structure remains uncertain. The abundance pattern shows the effect of accreted material with a distinct magnesium-rich flavour. Combined with earlier identifications, this discovery supports a correlation between the incidence of magnetism in cool white dwarfs and their contamination by heavy elements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا