Interaction-induced Bloch Oscillation in a Harmonically Trapped and Fermionized Quantum Gas in One Dimension


Abstract in English

Motivated by a recent experiment by F. Meinert et al, arxiv:1608.08200, we study the dynamics of an impurity moving in the background of a harmonically trapped one-dimensional Bose gas in the hard-core limit. We show that due to the hidden lattice structure of background bosons, the impurity effectively feels a quasi-periodic potential via impurity-boson interactions that can drive the Bloch oscillation under an external force, even in the absence of real lattice potentials. Meanwhile, the inhomogeneous density of trapped bosons imposes an additional harmonic potential to the impurity, resulting in a similar oscillation dynamics but with different periods and amplitudes. We show that the sign and the strength of impurity-boson coupling can significantly affect above two potentials so as to determine the impurity dynamics.

Download