Do you want to publish a course? Click here

The join construction

112   0   0.0 ( 0 )
 Added by Egbert Rijke
 Publication date 2017
  fields
and research's language is English
 Authors Egbert Rijke




Ask ChatGPT about the research

In homotopy type theory we can define the join of maps as a binary operation on maps with a common co-domain. This operation is commutative, associative, and the unique map from the empty type into the common codomain is a neutral element. Moreover, we show that the idempotents of the join of maps are precisely the embeddings, and we prove the `join connectivity theorem, which states that the connectivity of the join of maps equals the join of the connectivities of the individual maps. We define the image of a map $f:Ato X$ in $U$ via the join construction, as the colimit of the finite join powers of $f$. The join powers therefore provide approximations of the image inclusion, and the join connectivity theorem implies that the approximating maps into the image increase in connectivity. A modified version of the join construction can be used to show that for any map $f:Ato X$ in which $X$ is only assumed to be locally small, the image is a small type. We use the modified join construction to give an alternative construction of set-quotients, the Rezk completion of a precategory, and we define the $n$-truncation for any $n:mathbb{N}$. Thus we see that each of these are definable operations on a univalent universe for Martin-Lof type theory with a natural numbers object, that is moreover closed under homotopy coequalizers.



rate research

Read More

The Bourbaki-Witt principle states that any progressive map on a chain-complete poset has a fixed point above every point. It is provable classically, but not intuitionistically. We study this and related principles in an intuitionistic setting. Among other things, we show that Bourbaki-Witt fails exactly when the trichotomous ordinals form a set, but does not imply that fixed points can always be found by transfinite iteration. Meanwhile, on the side of models, we see that the principle fails in realisability toposes, and does not hold in the free topos, but does hold in all cocomplete toposes.
95 - Michael Shulman 2017
This is an introduction to type theory, synthetic topology, and homotopy type theory from a category-theoretic and topological point of view, written as a chapter for the book New Spaces for Mathematics and Physics (ed. Gabriel Catren and Mathieu Anel).
We show that the classifying topos for the theory of fields does not satisfy De Morgans law, and we identify its largest dense De Morgan subtopos as the classifying topos for the theory of fields of nonzero characteristic which are algebraic over their prime fields.
We make some beginning observations about the category $mathbb{E}mathrm{q}$ of equivalence relations on the set of natural numbers, where a morphism between two equivalence relations $R,S$ is a mapping from the set of $R$-equivalence classes to that of $S$-equivalence classes, which is induced by a computable function. We also consider some full subcategories of $mathbb{E}mathrm{q}$, such as the category $mathbb{E}mathrm{q}(Sigma^0_1)$ of computably enumerable equivalence relations (called ceers), the category $mathbb{E}mathrm{q}(Pi^0_1)$ of co-computably enumerable equivalence relations, and the category $mathbb{E}mathrm{q}(mathrm{Dark}^*)$ whose objects are the so-called dark ceers plus the ceers with finitely many equivalence classes. Although in all these categories the monomorphisms coincide with the injective morphisms, we show that in $mathbb{E}mathrm{q}(Sigma^0_1)$ the epimorphisms coincide with the onto morphisms, but in $mathbb{E}mathrm{q}(Pi^0_1)$ there are epimorphisms that are not onto. Moreover, $mathbb{E}mathrm{q}$, $mathbb{E}mathrm{q}(Sigma^0_1)$, and $mathbb{E}mathrm{q}(mathrm{Dark}^*)$ are closed under finite products, binary coproducts, and coequalizers, but we give an example of two morphisms in $mathbb{E}mathrm{q}(Pi^0_1)$ whose coequalizer in $mathbb{E}mathrm{q}$ is not an object of $mathbb{E}mathrm{q}(Pi^0_1)$.
We propose foundations for a synthetic theory of $(infty,1)$-categories within homotopy type theory. We axiomatize a directed interval type, then define higher simplices from it and use them to probe the internal categorical structures of arbitrary types. We define Segal types, in which binary composites exist uniquely up to homotopy; this automatically ensures composition is coherently associative and unital at all dimensions. We define Rezk types, in which the categorical isomorphisms are additionally equivalent to the type-theoretic identities - a local univalence condition. And we define covariant fibrations, which are type families varying functorially over a Segal type, and prove a dependent Yoneda lemma that can be viewed as a directed form of the usual elimination rule for identity types. We conclude by studying homotopically correct adjunctions between Segal types, and showing that for a functor between Rezk types to have an adjoint is a mere proposition. To make the bookkeeping in such proofs manageable, we use a three-layered type theory with shapes, whose contexts are extended by polytopes within directed cubes, which can be abstracted over using extension types that generalize the path-types of cubical type theory. In an appendix, we describe the motivating semantics in the Reedy model structure on bisimplicial sets, in which our Segal and Rezk types correspond to Segal spaces and complete Segal spaces.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا