Do you want to publish a course? Click here

A computational approach to calculate the heat of transport of aqueous solutions

63   0   0.0 ( 0 )
 Added by Silvia Di Lecce
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thermal gradients induce concentration gradients in alkali halide solutions, and the salt migrates towards hot or cold regions depending on the average temperature of the solution. This effect has been interpreted using the heat of transport, which provides a route to rationalize thermophoretic phenomena. Early theories provide estimates of the heat of transport at infinite dilution. These values are used to interpret thermodiffusion (Soret) and thermoelectric (Seebeck) effects. However, accessing heats of transport of individual ions at finite concentration remains an outstanding question both theoretically and experimentally. Here we discuss a computational approach to calculate heats of transport of aqueous solutions at finite concentrations, and apply our method to study lithium chloride solutions at concentrations $>0.5$~M. The heats of transport are significantly different for Li$^+$ and Cl$^-$ ions, unlike what is expected at infinite dilution. We find theoretical evidence for the existence of minima in the Soret coefficient of LiCl, where the magnitude of the heat of transport is maximized. The Seebeck coefficient obtained from the ionic heats of transport varies significantly with temperature and concentration. We identify thermodynamic conditions leading to a maximization of the thermoelectric response of aqueous solutions.



rate research

Read More

In this work, we use large-scale molecular dynamics simulations coupled to free energy calculations to identify for the first time a limit of stability (spinodal) and a change in the nucleation mechanism in aqueous NaCl solutions. This is a system of considerable atmospheric, geological and technical significance. We find that the supersaturated metastable NaCl solution reaches its limit of stability at sufficiently high salt concentrations, as indicated by the composition dependence of the salt chemical potential, indicating the transition to a phase separation by spinodal decomposition. However, the metastability limit of the NaCl solution does not correspond to spinodal decomposition with respect to crystallization. We find that beyond this spinodal, a liquid/amorphous separation occurs in the aqueous solution, whereby the ions first form disordered clusters. We term these clusters as amorphous salt. We also identify a transition from one- to two-step crystallization mechanism driven by a spinodal. In particular, crystallization from aqueous NaCl solution beyond the spinodal is a two-step process, in which the ions first phase-separate into disordered amorphous salt clusters, followed by the crystallization of ions in the amorphous salt phase. In contrast, in the aqueous NaCl solution at concentrations lower than the spinodal, crystallization occurs via a one-step process, as the ions aggregate directly into crystalline nuclei. The change of mechanism with increasing supersaturation underscores the importance of an accurate determination of the driving force for phase separation. The study has broader implications on the mechanism for nucleation of crystals from solutions at high supersaturations.
We propose a nonequilibrium variational polaron transformation, based on an ansatz for nonequilibrium steady state (NESS) with an effective temperature, to study quantum heat transport at the nanoscale. By combining the variational polaron transformed master equation with the full counting statistics, we have extended the applicability of the polaron-based framework to study nonequilibrium process beyond the super-Ohmic bath models. Previously, the polaron-based framework for quantum heat transport reduces exactly to the non-interacting blip approximation (NIBA) formalism for Ohmic bath models due to the issue of the infrared divergence associated with the full polaron transformation. The nonequilibrium variational method allows us to appropriately treat the infrared divergence in the low-frequency bath modes and explicitly include cross-bath correlation effects. These improvements provide more accurate calculation of heat current than the NIBA formalism for Ohmic bath models. We illustrate the aforementioned improvements with the nonequilibrium spin-boson model in this work and quantitatively demonstrate the cross-bath correlation, current turnover, and rectification effects in quantum heat transfer.
We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the SPC/E water model. The calculated nucleation rates are significantly lower than available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwalds step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.
We discuss the heat transfer by photons between two metals coupled by a linear element with a reactive impedance. Using a simple circuit approach, we calculate the spectral power transmitted from one resistor to the other and find that it is determined by the photon transmission coefficient, which depends on the impedances of the metals and the coupling element. We study the total photonic power flow for different coupling impedances, both in the linear regime, where the temperature difference between the metals is small, and in the non-linear regime of large temperature differences.
The formation of stable products of water decomposition under laser exposure of aqueous colloidal solutions of nanoparticles is experimentally studied. Laser exposure of colloidal solutions leads to formation of H2, O2, and H2O2. The dependence of the yield of these products depends on the energy density of laser radiation inside the liquid and concentration of nanoparticles. The ratio H2/O2 depends on laser fluence and is shifted towards H2. There are at least to sources of H2O2, namely, laser-induced breakdown plasma and ultrasound induced by laser pulses in the liquid. The formation of both H2 and O2 is tentatively assigned to direct dissociation of H2O molecules by electron impact from laser-induced plasma.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا