Do you want to publish a course? Click here

Local analogues of high-redshift star-forming galaxies: integral field spectroscopy of green peas

127   0   0.0 ( 0 )
 Added by Emma Lofthouse
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use integral field spectroscopy, from the SWIFT and Palm3K instruments, to perform a spatially-resolved spectroscopic analysis of four nearby highly star-forming `green pea (GP) galaxies, that are likely analogues of star-forming systems at z~2.5-3. By studying emission-line maps in H$alpha$, [NII]$lambda lambda$6548,6584 and [SII]$lambda$$lambda$6716,6731, we explore the kinematic morphology of these systems and constrain properties such as gas-phase metallicities, electron densities and gas-ionization mechanisms. Two of our GPs are rotationally-supported while the others are dispersion-dominated systems. The rotationally-supported galaxies both show evidence for recent or ongoing mergers. However, given that these systems have intact disks, these interactions are likely to have low mass ratios (i.e. minor mergers), suggesting that the minor-merger process may be partly responsible for the high SFRs seen in these GPs. Nevertheless, the fact that the other two GPs appear morphologically undisturbed suggests that mergers (including minor mergers) are not necessary for driving the high star formation rates in such galaxies. We show that the GPs are metal-poor systems (25-40 per cent of solar) and that the gas ionization is not driven by AGN in any of our systems, indicating that AGN activity is not co-eval with star formation in these starbursting galaxies.

rate research

Read More

We compare the relations among various integrated characteristics of ~25,000 low-redshift (z<1.0) compact star-forming galaxies (CSFGs) from Data Release 16 (DR16) of the Sloan Digital Sky Survey (SDSS) and of high-redshift (z>1.5) star-forming galaxies (SFGs) with respect to oxygen abundances, stellar masses M*, far-UV absolute magnitudes M(FUV), star-formation rates SFR and specific star-formation rates sSFR, Lyman-continuum photon production efficiencies (xi_ion), UV continuum slopes beta, [OIII]5007/[OII]3727 and [NeIII]3868/[OII]3727 ratios, and emission-line equivalent widths EW([OII]3727), EW([OIII]5007), and EW(Halpha). We find that the relations for low-z CSFGs with high equivalent widths of the Hbeta emission line, EW(Hbeta)>100A, and high-z SFGs are very similar, implying close physical properties in these two categories of galaxies. Thus, CSFGs are likely excellent proxies for the SFGs in the high-z Universe. They also extend to galaxies with lower stellar masses, down to ~10^6 Msun, and to absolute FUV magnitudes as faint as -14 mag. Thanks to their proximity, CSFGs can be studied in much greater detail than distant SFGs. Therefore, the relations between the integrated characteristics of the large sample of CSFGs studied here can prove very useful for our understanding of high-z dwarf galaxies in future observations with large ground-based and space telescopes.
We investigate a class of rapidly growing emission line galaxies, known as Green Peas, first noted by volunteers in the Galaxy Zoo project because of their peculiar bright green colour and small size, unresolved in SDSS imaging. Their appearance is due to very strong optical emission lines, namely [O III] 5007 A, with an unusually large equivalent width of up to ~1000 A. We discuss a well-defined sample of 251 colour-selected objects, most of which are strongly star forming, although there are some AGN interlopers including 8 newly discovered narrow Line Seyfert 1 galaxies. The star-forming Peas are low mass galaxies (M~10^8.5 - 10^10 M_sun) with high star formation rates (~10 M_sun/yr), low metallicities (log[O/H] + 12 ~ 8.7) and low reddening (E(B-V) < 0.25) and they reside in low density environments. They have some of the highest specific star formation rates (up to ~10^{-8} yr^{-1}) seen in the local Universe, yielding doubling times for their stellar mass of hundreds of Myrs. The few star-forming Peas with HST imaging appear to have several clumps of bright star-forming regions and low surface density features that may indicate recent or ongoing mergers. The Peas are similar in size, mass, luminosity and metallicity to Luminous Blue Compact Galaxies. They are also similar to high redshift UV-luminous galaxies, e.g., Lyman-break galaxies and Lyman-alpha emitters, and therefore provide a local laboratory with which to study the extreme star formation processes that occur in high-redshift galaxies. Studying starbursting galaxies as a function of redshift is essential to understanding the build up of stellar mass in the Universe.
84 - G. Bosch , R. Amorin (2 2019
Integral Field Spectroscopy (IFS) is well known for providing detailed insight of extended sources thanks to the possibility of handling space resolved spectroscopic information. Simple and straightforward analysis such as single line fitting yield interesting results, although it might miss a more complete picture in many cases. Violent star forming regions, such as starburst galaxies, display very complex emission line profiles due to multiple kinematic components superposed in the line of sight. We perform a spatially resolved kinematical study of a single Green Pea (GP) galaxy, SDSSJ083843.63+385350.5, using a new method for analyzing Integral Field Unit (IFU) observations of emission line spectra. The method considers the presence of multiple components in the emission-line profiles and makes use of a statistical indicator to determine the meaningful number of components to fit the observed profiles. We are able to identify three distinct kinematic features throughout the field and discuss their link with a rotating component, a strong outflow and a turbulent mixing layer. We also derive an updated star formation rate for ourobj and discuss the link between the observed signatures of a large scale outflow and of the Lyman continuum (LyC) leakage detected in GP galaxies.
The extreme infrared (IR) luminosity of local luminous and ultra-luminous IR galaxies (U/LIRGs; 11 < log LIR /Lsun < 12 and log LIR /Lsun > 12, respectively) is mainly powered by star-formation processes triggered by mergers or interactions. While U/LIRGs are rare locally, at z > 1, they become more common, they dominate the star-formation rate (SFR) density, and a fraction of them are found to be normal disk galaxies. Therefore, there must be an evolution of the mechanism triggering these intense starbursts with redshift. To investigate this evolution, we present new optical SWIFT integral field spectroscopic H{alpha}+[NII] observations of a sample of 9 intermediate-z (0.2 < z < 0.4) U/LIRG systems selected from Herschel 250{mu}m observations. The main results are the following: (a) the ratios between the velocity dispersion and the rotation curve amplitude indicate that 10-25% (1-2 out of 8) might be compatible with being isolated disks while the remaining objects are interacting/merging systems; (b) the ratio between un-obscured and obscured SFR traced by H{alpha} and LIR, respectively, is similar in both local and these intermediate-z U/LIRGs; and (c) the ratio between 250{mu}m and the total IR luminosities of these intermediate-z U/LIRGs is higher than that of local U/LIRGs with the same LIR . This indicates a reduced dust temperature in these intermediate-z U/LIRGs. This, together with their already measured enhanced molecular gas content, suggests that the interstellar medium conditions are different in our sample of intermediate-z galaxies when compared to local U/LIRGs.
The Clusters, Clumps, Dust, and Gas in Extreme Star-Forming Galaxies (CCDG) survey with the Hubble Space Telescope includes multi-wavelength imaging of 13 galaxies less than 100 Mpc away spanning a range of morphologies and sizes, from Blue Compact Dwarfs (BCDs) to luminous infrared galaxies (LIRGs), all with star formation rates in excess of hundreds of solar masses per year. Images of 7 merging galaxies in the CCDG survey were artificially redshifted to compare with galaxies at z=0.5, 1, and 2. Most redshifted tails have surface brightnesses that would be visible at z=0.5 or 1 but not at z=2 due to cosmological dimming. Giant star clumps are apparent in these galaxies; the 51 measured have similar sizes, masses and colors as clumps in observed high-z systems in UDF, GEMS, GOODS, and CANDELS surveys. These results suggest that some clumpy high-z galaxies without observable tidal features could be the result of mergers. The local clumps also have the same star formation rate per unit area and stellar surface density as clumps observed at intermediate and high redshift, so they provide insight into the substructure of distant clumps. A total of 1596 star clusters brighter than MV = -9 were identified within the boundaries of the local clumps. The cluster magnitude distribution function is a power law with approximately the same slope (approximately -1 for a number-log luminosity plot) for all the galaxies both inside and outside the clumps and independent of clump surface brightness.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا