We calculate the conductances of a three-way junction of spinless Luttinger-liquid wires as functions of bias voltages applied to three independent Fermi-liquid reservoirs. In particular, we consider the setup that is characteristic of a tunneling experiment, in which the strength of electron-electron interactions in one of the arms of the junction (tunneling tip) is different from that in the other two arms (which together form a main wire). The scaling dependence of the two independent conductances on bias voltages is determined within a fermionic renormalization-group approach in the limit of weak interactions. The solution shows that, in general, the conductances scale with the bias voltages in an essentially different way compared to their scaling with the temperature $T$. Specifically, unlike in the two-terminal setup, the nonlinear conductances cannot be generically obtained from the linear ones by simply replacing $T$ with the corresponding bias voltage or the largest one. Remarkably, a finite tunneling bias voltage prevents the interaction-induced breakup of the main wire into two disconnected pieces in the limit of zero $T$ and a zero source-drain voltage.