Do you want to publish a course? Click here

Segregation patterns in binary mixtures with same layer-thicknesses under vertical vibration

77   0   0.0 ( 0 )
 Added by Qingfan Shi Prof.
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Inspired by the theoretical prediction [Phys. Rev. Lett. 86, 3423 (2001)] and the disputed experimental results [Phys. Rev. Lett. 89, 189601(2002), Phys. Rev. Lett. 90, 014302 (2003)], we systematically investigate the pattern of binary mixtures consisting of same layer-thickness under vertical vibration. Various kinds of mixtures with different diameters and densities particles are used to observe the separation regime. It is found that these mixtures behave like five kinds of segregation patterns for different driving control parameters, i.e., Brazil nut (BN), reversed Brazil nut (RBN), Mixed states, light-BN (LBN), and light-RBN (LRBN), where the latter two regimes are neither purely segregated nor completely mixed states. Not only that, but LBN (LRBN) is observed to be the transition path from BN (RBN) to Mixed state. Moreover, BN phenomenon takes place in the area of low density ratio and found to be independent of layer structure, while RBN is sensitive to the layer structure and occurs at the large density ratio but lower diameter ratio. Our result may be helpful for the establishment of theory about the segregation and mixing of granular mixtures.



rate research

Read More

We measure stability of two-dimensional granular mixtures in a rotating drum and relate grain configurations to stability. For our system, the smaller but smoother grains cluster near the center of the drum, while the larger, rougher grains remain near the outer edge. One consequence of the size segregation is that the smaller grains heavily influence the stability of the heap. We find that the maximum angle of stability is a non-linear function of composition, changing particularly rapidly when small grains are first added to a homogeneous pile of large grains. We conclude that the grain configuration within the central portion of the heap plays a prominent role in stability.
We study the phenomenon of migration of the small molecular weight component of a binary polymer mixture to the free surface using mean field and self-consistent field theories. By proposing a free energy functional that incorporates polymer-matrix elasticity explicitly, we compute the migrant volume fraction and show that it decreases significantly as the sample rigidity is increased. Estimated values of the bulk modulus suggest that the effect should be observable experimentally for rubber-like materials. This provides a simple way of controlling surface migration in polymer mixtures and can play an important role in industrial formulations, where surface migration often leads to decreased product functionality.
If a fluctuating medium is confined, the ensuing perturbation of its fluctuation spectrum generates Casimir-like effective forces acting on its confining surfaces. Near a continuous phase transition of such a medium the corresponding order parameter fluctuations occur on all length scales and therefore close to the critical point this effect acquires a universal character, i.e., to a large extent it is independent of the microscopic details of the actual system. Accordingly it can be calculated theoretically by studying suitable representative model systems. We report on the direct measurement of critical Casimir forces by total internal reflection microscopy (TIRM), with femto-Newton resolution. The corresponding potentials are determined for individual colloidal particles floating above a substrate under the action of the critical thermal noise in the solvent medium, constituted by a binary liquid mixture of water and 2,6-lutidine near its lower consolute point. Depending on the relative adsorption preferences of the colloid and substrate surfaces with respect to the two components of the binary liquid mixture, we observe that, upon approaching the critical point of the solvent, attractive or repulsive forces emerge and supersede those prevailing away from it. Based on the knowledge of the critical Casimir forces acting in film geometries within the Ising universality class and with equal or opposing boundary conditions, we provide the corresponding theoretical predictions for the sphere-planar wall geometry of the experiment. The experimental data for the effective potential can be interpreted consistently in terms of these predictions and a remarkable quantitative agreement is observed.
Spontaneous liquid-liquid phase separation is commonly understood in terms of phenomenological mean-field theories. These theories correctly predict the structural features of the fluid at sufficiently long time scales and wavelengths. However, these conditions are not met in various examples in biology and materials science where the mixture is slowly destabilised, and phase separation takes place close to the critical point. Using kinetic Monte Carlo and molecular dynamics simulations of a binary surface fluid under these conditions, we show that the characteristic length scale of the emerging structure decreases, in 2D, with the 4/15 dynamic critical exponent of the quench rate rather than the mean-field 1/6th power. Hence, the dynamics of cluster formation governed by thermodynamically undriven Brownian motion is much more sensitive on the rate of destabilisation than expected from mean-field theory. We discuss the expected implications of this finding to 3D systems with ordering liquid crystals, as well as phase-separating passive or active particles.
Using simulations and a virtual-spring-based approach, we measure the segregation force, Fseg, over a range of size-bidisperse mixture concentrations, particle size ratios, and shear rates to develop a model for Fseg that extends its applicability from the well-studied non-interacting intruders regime to finite-concentration mixtures where cooperative phenomena occur. The model predicts the concentration below which the single intruder assumption applies and provides an accurate description of the pressure partitioning between species.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا