No Arabic abstract
Ages and masses of young stars are often estimated by comparing their luminosities and effective temperatures to pre-main sequence stellar evolution tracks, but magnetic fields and starspots complicate both the observations and evolution. To understand their influence, we study the heavily-spotted weak-lined T-Tauri star LkCa 4 by searching for spectral signatures of radiation originating from the starspot or starspot groups. We introduce a new methodology for constraining both the starspot filling factor and the spot temperature by fitting two-temperature stellar atmosphere models constructed from Phoenix synthetic spectra to a high-resolution near-IR IGRINS spectrum. Clearly discernable spectral features arise from both a hot photospheric component $T_{mathrm{hot}} sim4100$ K and to a cool component $T_{mathrm{cool}} sim2700-3000$ K, which covers $sim80%$ of the visible surface. This mix of hot and cool emission is supported by analyses of the spectral energy distribution, rotational modulation of colors and of TiO band strengths, and features in low-resolution optical/near-IR spectroscopy. Although the revised effective temperature and luminosity make LkCa 4 appear much younger and lower mass than previous estimates from unspotted stellar evolution models, appropriate estimates will require the production and adoption of spotted evolutionary models. Biases from starspots likely afflict most fully convective young stars and contribute to uncertainties in ages and age spreads of open clusters. In some spectral regions starspots act as a featureless veiling continuum owing to high rotational broadening and heavy line-blanketing in cool star spectra. Some evidence is also found for an anti-correlation between the velocities of the warm and cool components.
Magnetospheric accretion has been thoroughly studied in young stellar systems with full non-evolved accretion disks, but it is poorly documented for transition disk objects with large inner cavities. We aim at characterizing the star-disk interaction and the accretion process onto the central star of LkCa 15, a transition disk system with an inner dust cavity. We obtained quasi-simultaneous photometric and spectropolarimetric observations of the system over several rotational periods. We analyzed the system light curve, as well as changes in spectral continuum and line profile to derive the properties of the accretion flow from the edge of the inner disk to the central star. We also derived magnetic field measurements at the stellar surface. We find that the system exhibits magnetic, photometric, and spectroscopic variability with a period of about 5.70 days. The light curve reveals a periodic dip, which suggests the presence of an inner disk warp that is located at the corotation radius at about 0.06 au from the star. Line profile variations and veiling variability are consistent with a magnetospheric accretion model where the funnel flows reach the star at high latitudes. This leads to the development of an accretion shock close to the magnetic poles. All diagnostics point to a highly inclined inner disk that interacts with the stellar magnetosphere. The spectroscopic and photometric variability of LkCa 15 is remarkably similar to that of AA Tau, the prototype of periodic dippers. We therefore suggest that the origin of the variability is a rotating disk warp that is located at the inner edge of a highly inclined disk close to the star. This contrasts with the moderate inclination of the outer transition disk seen on the large scale and thus provides evidence for a significant misalignment between the inner and outer disks of this planet-forming transition disk system.
We report results of a spectropolarimetric and photometric monitoring of the weak-line T Tauri star LkCa4 within the MaTYSSE programme, involving ESPaDOnS at the Canada-France-Hawaii Telescope. Despite an age of only 2Myr and a similarity with prototypical classical T Tauri stars, LkCa4 shows no evidence for accretion and probes an interesting transition stage for star and planet formation. Large profile distortions and Zeeman signatures are detected in the unpolarized and circularly-polarized lines of LkCa4 using Least-Squares Deconvolution (LSD), indicating the presence of brightness inhomogeneities and magnetic fields at the surface of LkCa4. Using tomographic imaging, we reconstruct brightness and magnetic maps of LkCa4 from sets of unpolarized and circularly-polarized LSD profiles. The large-scale field is strong and mainly axisymmetric, featuring a ~2kG poloidal component and a ~1kG toroidal component encircling the star at equatorial latitudes - the latter making LkCa4 markedly different from classical TTauri stars of similar mass and age. The brightness map includes a dark spot overlapping the magnetic pole and a bright region at mid latitudes - providing a good match to the contemporaneous photometry. We also find that differential rotation at the surface of LkCa4 is small, typically ~5.5x weaker than that of the Sun, and compatible with solid-body rotation. Using our tomographic modelling, we are able to filter out the activity jitter in the RV curve of LkCa4 (of full amplitude 4.3km/s) down to a rms precision of 0.055km/s. Looking for hot Jupiters around young Sun-like stars thus appears feasible, even though we find no evidence for such planets around LkCa4.
In this paper, we present a study of the Trapezium cluster in Orion. We analyze flux-calibrated VLT/MUSE spectra of 361 stars to simultaneously measure the spectral types, reddening, and the optical veiling due to accretion. We find that the extinction law from Cardelli et al. (1989) with a total-to-selective extinction value of $R_{rm V}=$5.5 is more suitable for this cluster. For 68% of the sample the new spectral types are consistent with literature spectral types within 2 subclasses, but as expected, we derive systematically later types than the literature by one to two subclasses for the sources with significant accretion levels. Here we present an improved Hertzsprung-Russell (H-R) diagram of the Trapezium cluster, in which the contamination by optical veiling on spectral types and stellar luminosities has been properly removed. A comparison of the locations of the stars in the H-R diagram with the non-magnetic and magnetic pre-main sequence evolutionary tracks indicates an age of 1--2~Myr. The magnetic pre-main sequence evolutionary tracks can better explain the luminosities of the low-mass stars. In the H-R diagram, the cluster exhibits a large luminosity spread ($sigma$(Log~$L_{star}/L_{odot})sim$0.3). By collecting a sample of 14 clusters/groups with different ages, we find that the luminosity spread tends to be constant ($sigma$(Log~$L_{star}/L_{odot})sim$0.2--0.25) after 2~Myr, which suggests that age spread is not the main cause of the spread. There are $sim$0.1~dex larger luminosity spreads for the younger clusters, e.g., the Trapezium cluster, than the older clusters, which can be explained by the starspots, accretion history and circumstellar disk orientations.
We present the discovery of two extended $sim$0.12 mag dimming events of the weak-lined T-Tauri star V1334. The start of the first event was missed but came to an end in late 2003, and the second began in February 2009, and continues as of November 2016. Since the egress of the current event has not yet been observed, it suggests a period of $>$13 years if this event is periodic. Spectroscopic observations suggest the presence of a small inner disk, although the spectral energy distribution shows no infrared excess. We explore the possibility that the dimming events are caused by an orbiting body (e.g. a disk warp or dust trap), enhanced disk winds, hydrodynamical fluctuations of the inner disk, or a significant increase in the magnetic field flux at the surface of the star. We also find a $sim$0.32 day periodic photometric signal that persists throughout the 2009 dimming which appears to not be due to ellipsoidal variations from a close stellar companion. High precision photometric observations of V1334 Tau during K2 campaign 13, combined with simultaneous photometric and spectroscopic observations from the ground, will provide crucial information about the photometric variability and its origin.
We report new multi-colour photometry and high-resolution spectroscopic observations of the long-period variable V501 Aur, previously considered to be a weak-lined T-Tauri star belonging to the Taurus-Auriga star-forming region. The spectroscopic observations reveal that V501 Aur is a single-lined spectroscopic binary system with a 68.8-day orbital period, a slightly eccentric orbit (e ~ 0.03), and a systemic velocity discrepant from the mean of Taurus-Auriga. The photometry shows quasi-periodic variations on a different, ~55-day timescale that we attribute to rotational modulation by spots. No eclipses are seen. The visible object is a rapidly rotating (vsini ~ 25 km/s) early K star, which along with the rotation period implies it must be large (R > 26.3 Rsun), as suggested also by spectroscopic estimates indicating a low surface gravity. The parallax from the Gaia mission and other independent estimates imply a distance much greater than the Taurus-Auriga region, consistent with the giant interpretation. Taken together, this evidence together with a re-evaluation of the LiI~$lambda$6707 and H$alpha$ lines shows that V501 Aur is not a T-Tauri star, but is instead a field binary with a giant primary far behind the Taurus-Auriga star-forming region. The large mass function from the spectroscopic orbit and a comparison with stellar evolution models suggest the secondary may be an early-type main-sequence star.