Do you want to publish a course? Click here

Plausible Shading Decomposition For Layered Photo Retouching

188   0   0.0 ( 0 )
 Added by Carlo Innamorati
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Photographers routinely compose multiple manipulated photos of the same scene (layers) into a single image, which is better than any individual photo could be alone. Similarly, 3D artists set up rendering systems to produce layered images to contain only individual aspects of the light transport, which are composed into the final result in post-production. Regrettably, both approaches either take considerable time to capture, or remain limited to synthetic scenes. In this paper, we suggest a system to allow decomposing a single image into a plausible shading decomposition (PSD) that approximates effects such as shadow, diffuse illumination, albedo, and specular shading. This decomposition can then be manipulated in any off-the-shelf image manipulation software and recomposited back. We perform such a decomposition by learning a convolutional neural network trained using synthetic data. We demonstrate the effectiveness of our decomposition on synthetic (i.e., rendered) and real data (i.e., photographs), and use them for common photo manipulation, which are nearly impossible to perform otherwise from single images.



rate research

Read More

Photo retouching aims at improving the aesthetic visual quality of images that suffer from photographic defects such as poor contrast, over/under exposure, and inharmonious saturation. In practice, photo retouching can be accomplished by a series of image processing operations. As most commonly-used retouching operations are pixel-independent, i.e., the manipulation on one pixel is uncorrelated with its neighboring pixels, we can take advantage of this property and design a specialized algorithm for efficient global photo retouching. We analyze these global operations and find that they can be mathematically formulated by a Multi-Layer Perceptron (MLP). Based on this observation, we propose an extremely lightweight framework -- Conditional Sequential Retouching Network (CSRNet). Benefiting from the utilization of $1times1$ convolution, CSRNet only contains less than 37K trainable parameters, which are orders of magnitude smaller than existing learning-based methods. Experiments show that our method achieves state-of-the-art performance on the benchmark MIT-Adobe FiveK dataset quantitively and qualitatively. In addition to achieve global photo retouching, the proposed framework can be easily extended to learn local enhancement effects. The extended model, namly CSRNet-L, also achieves competitive results in various local enhancement tasks. Codes will be available.
We introduce a novel solver to significantly reduce the size of a geometric operator while preserving its spectral properties at the lowest frequencies. We use chordal decomposition to formulate a convex optimization problem which allows the user to control the operator sparsity pattern. This allows for a trade-off between the spectral accuracy of the operator and the cost of its application. We efficiently minimize the energy with a change of variables and achieve state-of-the-art results on spectral coarsening. Our solver further enables novel applications including volume-to-surface approximation and detaching the operator from the mesh, i.e., one can produce a mesh tailormade for visualization and optimize an operator separately for computation.
Interaction in virtual reality (VR) environments is essential to achieve a pleasant and immersive experience. Most of the currently existing VR applications, lack of robust object grasping and manipulation, which are the cornerstone of interactive systems. Therefore, we propose a realistic, flexible and robust grasping system that enables rich and real-time interactions in virtual environments. It is visually realistic because it is completely user-controlled, flexible because it can be used for different hand configurations, and robust because it allows the manipulation of objects regardless their geometry, i.e. hand is automatically fitted to the object shape. In order to validate our proposal, an exhaustive qualitative and quantitative performance analysis has been carried out. On the one hand, qualitative evaluation was used in the assessment of the abstract aspects such as: hand movement realism, interaction realism and motor control. On the other hand, for the quantitative evaluation a novel error metric has been proposed to visually analyze the performed grips. This metric is based on the computation of the distance from the finger phalanges to the nearest contact point on the object surface. These contact points can be used with different application purposes, mainly in the field of robotics. As a conclusion, system evaluation reports a similar performance between users with previous experience in virtual reality applications and inexperienced users, referring to a steep learning curve.
Mimicking natural tessellation patterns is a fascinating multi-disciplinary problem. Geometric methods aiming at reproducing such partitions on surface meshes are commonly based on the Voronoi model and its variants, and are often faced with challenging issues such as metric estimation, geometric, topological complications, and most critically parallelization. In this paper, we introduce an alternate model which may be of value for resolving these issues. We drop the assumption that regions need to be separated by lines. Instead, we regard region boundaries as narrow bands and we model the partition as a set of smooth functions layered over the surface. Given an initial set of seeds or regions, the partition emerges as the solution of a time dependent set of partial differential equations describing concurrently evolving fronts on the surface. Our solution does not require geodesic estimation, elaborate numerical solvers, or complicated bookkeeping data structures. The cost per time-iteration is dominated by the multiplication and addition of two sparse matrices. Extension of our approach in a Lloyds algorithm fashion can be easily achieved and the extraction of the dual mesh can be conveniently preformed in parallel through matrix algebra. As our approach relies mainly on basic linear algebra kernels, it lends itself to efficient implementation on modern graphics hardware.
68 - Yongjie Zhu , Jiajun Tang , Si Li 2021
We propose DeRenderNet, a deep neural network to decompose the albedo and latent lighting, and render shape-(in)dependent shadings, given a single image of an outdoor urban scene, trained in a self-supervised manner. To achieve this goal, we propose to use the albedo maps extracted from scenes in videogames as direct supervision and pre-compute the normal and shadow prior maps based on the depth maps provided as indirect supervision. Compared with state-of-the-art intrinsic image decomposition methods, DeRenderNet produces shadow-free albedo maps with clean details and an accurate prediction of shadows in the shape-independent shading, which is shown to be effective in re-rendering and improving the accuracy of high-level vision tasks for urban scenes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا