No Arabic abstract
An X1.6 flare occurred in AR 12192 on 2014 October 22 at 14:02 UT and was observed by Hinode, IRIS, SDO, and RHESSI. We analyze a bright kernel which produces a white light (WL) flare with continuum enhancement and a hard X-ray (HXR) peak. Taking advantage of the spectroscopic observations of IRIS and Hinode/EIS, we measure the temporal variation of the plasma properties in the bright kernel in the chromosphere and corona. We found that explosive evaporation was observed when the WL emission occurred, even though the intensity enhancement in hotter lines is quite weak. The temporal correlation of the WL emission, HXR peak, and evaporation flows indicate that the WL emission was produced by accelerated electrons. To understand the white light emission process, we calculated the energy flux deposited by non- thermal electrons (observed by RHESSI) and compared it to the dissipated energy estimated from a chromospheric line (Mg II triplet) observed by IRIS. The deposited energy flux from the non-thermal electrons is about 3 ~ 7.7 X 10^(10) erg cm^(-2) s^(-1) for a given low energy cut-off of 30 ~ 40 keV, assuming the thick target model. The energy flux estimated from the temperature changes in the chromosphere measured using the Mg II subordinate line is about 4.6 - 6.7 X 10(9) erg cm^(-2) s^(-1): ~6-22% of the deposited energy. This comparison of estimated energy fluxes implies that the continuum enhancement was directly produced by the non-thermal electrons.
We report on observations of recurrent jets by instruments onboard the Interface Region Imaging Spectrograph (IRIS), Solar Dynamics Observatory (SDO) and Hinode spacecrafts. Over a 4-hour period on July 21st 2013, recurrent coronal jets were observed to emanate from NOAA Active Region 11793. FUV spectra probing plasma at transition region temperatures show evidence of oppositely directed flows with components reaching Doppler velocities of +/- 100 km/s. Raster Doppler maps using a Si IV transition region line show all four jets to have helical motion of the same sense. Simultaneous observations of the region by SDO and Hinode show that the jets emanate from a source region comprising a pore embedded in the interior of a supergranule. The parasitic pore has opposite polarity flux compared to the surrounding network field. This leads to a spine-fan magnetic topology in the coronal field that is amenable to jet formation. Time-dependent data-driven simulations are used to investigate the underlying drivers for the jets. These numerical experiments show that the emergence of current-carrying magnetic field in the vicinity of the pore supplies the magnetic twist needed for recurrent helical jet formation.
Solar ultraviolet (UV) bursts are small-scale compact brightenings in transition region images. The spectral profiles of transition region lines in these bursts are significantly enhanced and broadened, often with chromospheric absorption lines such as Ni~{sc{ii}} 1335.203 and 1393.330 {AA} superimposed. We investigate the properties of several UV bursts using a coordinated observation of the Interface Region Imaging Spectrograph (IRIS), Solar Dynamics Observatory (SDO), and textit{Hinode} on 2015 February 7. We have identified 12 UV bursts, and 11 of them reveal small blueshifts of the Ni~{sc{ii}} absorption lines. However, the Ni~{sc{ii}} lines in one UV burst exhibit obvious redshifts of $sim$20 km s$^{-1}$, which appear to be related to the cold plasma downflows observed in the IRIS slit-jaw images. We also examine the three-dimensional magnetic field topology using a magnetohydrostatic model, and find that some UV bursts are associated with magnetic null points or bald patches. In addition, we find that these UV bursts reveal no obvious coronal signatures from the observations of the Atmospheric Imaging Assembly (AIA) on board SDO and the EUV Imaging Spectrometer (EIS) on board textit{Hinode}.
We investigate triggering, activation, and ejection of a solar eruptive prominence that occurred in a multi-polar flux system of active region NOAA 11548 on 2012 August 18 by analyzing data from AIA on board SDO, RHESSI, and EUVI/SECCHI on board STEREO. Prior to the prominence activation, we observed striking coronal activities in the form of a blowout jet which is associated with rapid eruption of a cool flux rope. Further, the jet-associated flux rope eruption underwent splitting and rotation during its outward expansion. These coronal activities are followed by the prominence activation during which it slowly rises with a speed of ~12 km/s while the region below the prominence emits gradually varying EUV and thermal X-ray emissions. From these observations, we propose that the prominence eruption is a complex, multi-step phenomenon in which a combination of internal (tether-cutting reconnection) and external (i.e., pre-eruption coronal activities) processes are involved. The prominence underwent catastrophic loss of equilibrium with the onset of the impulsive phase of an M1.8 flare suggesting large-scale energy release by coronal magnetic reconnection. We obtained signatures of particle acceleration in the form of power law spectra with hard electron spectral index (delta ~ 3) and strong HXR footpoint sources. During the impulsive phase, a hot EUV plasmoid was observed below the apex of the erupting prominence that ejected in the direction of the prominence with a speed of ~177 km/s. The temporal, spatial and kinematic correlations between the erupting prominence and the plasmoid imply that the magnetic reconnection supported the fast ejection of prominence in the lower corona.
The physical properties and its contribution to the onset of solar flare are still unclear although chromospheric brightening is considered a precursor phenomenon of flare. Many studies suggested that photospheric magnetic field changes cause destabilization of large-scale coronal structure. We aim to understand how a small photospheric change contributes to a flare and to reveal how the intermediary chromosphere behaves in the precursor phase. We analyzed the precursor brightening of the X1.6 flare on 2014 October 22 in the AR 12192 using the Interface Region Imaging Spectrograph (IRIS) and Hinode/EUV Imaging Spectrometer (EIS) data. We investigated a localized jet with the strong precursor brightening, and compared the intensity, Doppler velocity, and line width in C II, Mg II k, Si IV lines by IRIS and He II, Fe XII, Fe XV lines by Hinode/EIS. We also analyzed photospheric magnetic field and chromospheric/coronal structures using Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA). We found a significant blueshift (~ 100 km/s), which is related to the strong precursor brightening over a characteristic magnetic field structure, and the blueshift was observed at all the temperature. This might indicate that the flow is accelerated by Lorentz force. Moreover, the large-scale coronal loop that connects the foot-points of the flare ribbons was destabilized just after the precursor brightening with the blueshift. It suggests that magnetic reconnection locally occurred in the lower chromosphere and it triggered magnetic reconnection of the X1.6 flare in the corona.
Context: Flare kernels brighten simultaneously in all SDO/AIA channels making it difficult to determine their temperature structure. IRIS is able to spectrally resolve Fe xxi emission from cold chromospheric brightenings, so can be used to infer the amount of Fe xxi emission in 131 channel. Aims: We use observations of two small solar flares seen by IRIS and SDO to compare the EMs deduced from the IRIS Fe xxi line and the AIA 131 channel to determine the fraction of Fe xxi emission in flare kernels in the 131 channel of AIA. Methods: Cotemporal and cospatial pseudo-raster AIA images are compared with the IRIS results.We use multi-Gaussian line fitting to separate the blending chromospheric emission so as to derive Fe xxi intensities and Doppler shifts in IRIS spectra. Results: We define loop and kernel regions based on the brightness of the 131 and 1600 {AA} intensities. In the loop regions the Fe xxi EMs are typically 80% of the 131 ones, and range from 67% to 92%. Much of the scatter is due to small misalignments but the largest site with low Fe xxi contributions was probably affected by a recent injection of cool plasma into the loop. In flare kernels the contribution of Fe xxi increases from less than 10% at the low intensity 131 sites to 40-80% in the brighter kernels. Here the Fe xxi is superimposed on bright chromospheric emission and the Fe xxi line shows blue shifts, sometimes extending up to the edge of the spectral window, 200 km/s. Conclusions: The AIA 131 emission in flare loops is due to Fe xxi emission with a 10-20% contribution from continuum, Fe xxiii, and cooler background plasma emission. In bright flare kernels up to 52% of the 131 is from cooler plasma. The wide range seen in the kernels is caused by significant structure in the kernels which is seen as sharp gradients in Fe xxi EM at sites of molecular and transition region emission.