The dust-forming nova V2676 Oph is unique in that it was the first nova to provide evidence of C_2 and CN molecules during its near-maximum phase and evidence of CO molecules during its early decline phase. Observations of this nova have revealed the slow evolution of its lightcurves and have also shown low isotopic ratios of carbon (12C/13C) and nitrogen (14N/15N) in its nova envelope. These behaviors indicate that the white dwarf (WD) star hosting V2676 Oph is a CO-rich WD rather than an ONe-rich WD (typically larger in mass than the former). We performed mid-infrared spectroscopic and photometric observations of V2676 Oph in 2013 and 2014 (respectively 452 and 782 days after its discovery). No significant [Ne II] emission at 12.8 micron was detected at either epoch. These provided evidence for a CO-rich WD star hosting V2676 Oph. Both carbon-rich and oxygen-rich grains were detected in addition to an unidentified infrared feature at 11.4 micron originating from polycyclic aromatic hydrocarbon molecules or hydrogenated amorphous carbon grains in the envelope of V2676 Oph.
Using our previously reported observations, we derive some physical parameters of the moderately fast nova V2676 Ophiuchi 2012 # 1. The best-fit CLOUDY model of the nebular spectrum obtained on 2015 May 8 shows a hot white dwarf source with Tbb = 1.0 x 10^{5} K having a luminosity of 1.0 x 10^{38} ergs/s. Our abundance analysis shows that the ejecta are significantly enhanced relative to solar, He/H = 2.14, O/H = 2.37, S/H = 6.62 and Ar/H = 3.25. The ejecta mass is estimated to be 1.42 x 10^{-5} Msun. The nova showed a pronounced dust formation phase after 90 days from discovery. The J-H and H-K colors were very large as compared to other molecule- and dust-forming novae in recent years. The dust temperature and mass at two epochs have been estimated from spectral energy distribution (SED) fits to infrared photometry.
We present near-infrared (NIR) observations of Nova V5668 Sgr, discovered in outburst on 2015 March 15.634 UT, between 2d to 107d after outburst. NIR spectral features are used to classify it as a FeII class of nova. The spectra follow the evolution of the spectral lines from a P Cygni stage to a pure emission phase where the shape of the profiles suggests the presence of a bipolar flow. A notable feature is the presence of carbon monoxide first overtone bands which are seen in emission. The CO emission is modeled to make estimates of the mass, temperature and column density to be (0.5--2.0)$times$ 10$^{-8}$ M$_odot$, 4000 $pm$ 300K and (0.36--1.94)$times$ 10$^{19}$ cm$^{-2}$ respectively. The $^{12}$C/$^{13}$C ratio is estimated to be $sim$ 1.5. V5668 Sgr was a strong dust producer exhibiting the classical deep dip in its optical light curve during dust formation. Analysis of the dust SED yields a dust mass of 2.7 $times$ 10${^{rm -7}}$ $M_odot $, a blackbody angular diameter of the dust shell of 42 mas and a distance estimate to the nova of 1.54 kpc which agrees with estimates made from MMRD relations.
Nova Mon 2012 was the first classical nova to be detected as a high energy $gamma$-ray transient, by Fermi-LAT, before its optical discovery. We study a time sequence of high resolution optical echelle spectra (Nordic Optical Telescope) and contemporaneous NOT, STIS UV, and CHIRON echelle spectra (Nov 20/21/22). We use [O III] and H$beta$ line fluxs to constrain the properties of the ejecta. We derive the structure from the optical and UV line profiles and compare our measured line fluxes for with predictions using Cloudy with abundances from other ONe novae. Mon 2012 is confirmed as an ONe nova. We find E(B-V)=0.85$pm$0.05 and hydrogen column density $approx 5times 10^{21}$ cm$^{-2}$. The corrected continuum luminosity is nearly the same in the entire observed energy range as V1974 Cyg, V382 Mon, and Nova LMC 2000 at the same epoch after outburst. The distance, about 3.6 kpc, is quite similar to V1974 Cyg. The line profiles can be modeled using an axisymmetric bipolar geometry for the ejecta with various inclinations of the axis to the line of sight, 60 le i le 80 degrees, an opening angle of approx$70 deg, inner radius $Delta R/R(t)approx 0.4$ for permitted lines and less filled for forbidden lines. The filling factor $fapprox 0.1-0.3$ implying M(ejecta) $leq 6times 10^{-5}$M$_odot$. The ONe novae appear to comprise a single physical class with bipolar high mass ejecta, similarly enhanced abundances, and a common spectroscopic evolution within a narrow range of luminosities. The detected $gamma$-ray emission may be a generic phenomenon, common to all ONe novae, possibly to all classical novae, and connected with acceleration and emission processes within the ejecta (abstract severely truncated).
We present results from the Large Magellanic Cloud Near-infrared Synoptic Survey (LMCNISS) for classical and type II Cepheid variables that were identified by the Optical Gravitational Lensing Experiment (OGLE-III) catalogue. Multiwavelength time-series data for classical Cepheid variables are used to study light-curve structures as a function of period and wavelength. We exploit a sample of $sim$1400 classical and $sim$80 type II Cepheid variables to derive Period--Wesenheit relations that combine both optical and near-infrared data. The new Period--Luminosity and Wesenheit relations are used to estimate distances to several Local Group galaxies (using classical Cepheids) and to Galactic globular clusters (using type II Cepheids). By appealing to a statistical framework, we find that fundamental-mode classical Cepheid Period--Luminosity relations are non-linear around 10--18 days at optical and near-IR wavelengths. We also suggest that a non-linear relation provides a better constraint on the Cepheid Period--Luminosity relation in type Ia Supernovae host galaxies, though it has a negligible effect on the systematic uncertainties affecting the local measurement of the Hubble constant.
Using mid-infrared (MIR) images of four photometric bands of the Infrared Camera (IRC) onboard the AKARI satellite, S7 (7 um), S11 (11 um), L15 (15 um), and L24 (24 um), we investigate the interstellar dust properties of the nearby pair of galaxies M51 with respect to its spiral arm structure. The arm and interarm regions being defined based on a spatially filtered stellar component model image, we measure the arm-to-interarm contrast for each band. The contrast is lowest in the S11 image, which is interpreted as that among the four AKARI MIR bands the S11 image best correlates with the spatial distribution of dust grains including colder components, while the L24 image with the highest contrast traces warmer dust heated by star forming activities. The surface brightness ratio between the bands, i.e. color, is measured over the disk of the main galaxy, M51a, at 300 pc resolution. We find that the distribution of S7/S11 is smooth and well traces the global spiral arm pattern while L15/S11 and L24/S11 peak at individual HII regions. This result indicates that the ionization state of PAHs is related to the spiral structure. Comparison with observational data and dust models also supports the importance of the variation in the PAH ionization state within the M51a disk. However, the mechanism driving this variation is not yet clear from currently available data sets. Another suggestion from the comparison with the models is that the PAH fraction to the total dust mass is higher than previously estimated.