Transverse densities describe the distribution of charge and current at fixed light-front time and provide a frame-independent spatial representation of hadrons as relativistic systems. We calculate the transverse densities of the octet baryons at peripheral distances b = O(M_pi^{-1}) in an approach combining chiral effective field theory (ChEFT) and dispersion analysis. The densities are represented as dispersive integrals of the imaginary parts of the baryon electromagnetic form factors in the timelike region (spectral functions). The spectral functions on the two-pion cut at t > 4 M_pi^2 are computed using relativistic ChEFT with octet and decuplet baryons in the EOMS renormalization scheme. The calculations are extended into the rho-meson mass region, using a dispersive method that incorporates the timelike pion form-factor data. The approach allows us to construct densities at distances b > 1 fm with controlled uncertainties. Our results provide insight into the peripheral structure of nucleons and hyperons and can be compared with empirical densities and lattice-QCD calculations.