No Arabic abstract
The Hubble Space Telescope recently celebrated 25 years of operation. Some of the first images of extragalactic optical jets were taken by HST in the mid-1990s; with time baselines on the order of 20 years and state-of-the-art astrometry techniques, we are now able to reach accuracies in proper-motion measurements on the order of a tenth of a milliarcsecond per year. We present the results of a recent HST program to measure the kiloparsec-scale proper motions of eleven nearby optical jets with Hubble, the first sample of its kind. When paired with VLBI proper-motion measurements on the parsec scale, we are now able to map the full velocity profile of these jets from near the black hole to the final deceleration as they extend out into and beyond the host galaxy. We see convincing evidence that weak-flavor jets (i.e., FR Is) have a slowly increasing jet speed up to 100 pc from the core, where superluminal components are first seen.
Jets are a ubiquitous part of the accretion process, created in AGN, by a coupling between the magnetic field near the central black hole and inflowing material. We point out what advances can be achieved by new technologies, concentrating on kiloparsec scales, beyond the Bondi radius, where accretion stops. Here, jets profoundly influence their host galaxy and the surrounding clusters and groups, transporting prodigious amounts of matter and energies to scales of hundreds of kpc. Basic questions still remain regarding jet physics, which new instruments can advance greatly. The ngVLA, LOFAR, JWST and LUVOIR, as well as a Chandra successor, will give higher angular resolution and sensitivity. This will allow us to probe the emission mechanisms and dynamics of jets, and search for links between these areas, magnetic fields, particle acceleration and high-energy emission mechanisms. We stress the need for polarimetry in the X-ray and optical, critical to many of the most important questions in jet physics. We hope to directly probe resolved, flaring components, which for the first time will allow us to reveal how jets respond to stimuli and link statics and dynamics.
Proper motions (PMs) are crucial to fully understand the internal dynamics of globular clusters (GCs). To that end, the Hubble Space Telescope (HST) Proper Motion (HSTPROMO) collaboration has constructed large, high-quality PM catalogues for 22 Galactic GCs. We highlight some of our exciting recent results: the first directly-measured radial anisotropy profiles for a large sample of GCs; the first dynamical distance and mass-to-light (M/L) ratio estimates for a large sample of GCs; and the first dynamically-determined masses for hundreds of blue-straggler stars (BSSs) across a large GC sample.
The radio galaxy 3C 273 hosts one of the nearest and best-studied powerful quasar jets. Having been imaged repeatedly by the Hubble Space Telescope (HST) over the past twenty years, it was chosen for an HST program to measure proper motions in the kiloparsec-scale resolved jets of nearby radio-loud active galaxies. The jet in 3C 273 is highly relativistic on sub-parsec scales, with apparent proper motions up to 15$c$ observed by VLBI (Lister et al., 2013). In contrast, we find that the kpc-scale knots are compatible with being stationary, with a mean speed of $-$0.2$pm$0.5$c$ over the whole jet. Assuming the knots are packets of moving plasma, an upper limit of 1c implies a bulk Lorentz factor $Gamma<$2.9. This suggests that the jet has either decelerated significantly by the time it reaches the kpc scale, or that the knots in the jet are standing shock features. The second scenario is incompatible with the inverse Compton off the Cosmic Microwave Background (IC/CMB) model for the X-ray emission of these knots, which requires the knots to be in motion, but IC/CMB is also disfavored in the first scenario due to energetic considerations, in agreement with the recent finding of Meyer & Georganopoulos (2014) which ruled out the IC/CMB model for the X-ray emission of 3C 273 via gamma-ray upper limits.
We have discovered kiloparsec-scale extended radio emission in three narrow-line Seyfert 1 galaxies (NLS1s) in sub-arcsecond resolution 9 GHz images from the Karl G. Jansky Very Large Array (VLA). We find all sources show two-sided, mildly core-dominated jet structures with diffuse lobes dominated by termination hotspots. These span 20-70 kpc with morphologies reminiscent of FR II radio galaxies, while the extended radio luminosities are intermediate between FR I and FR II sources. In two cases the structure is linear, while a $45^{circ}$ bend is apparent in the third. Very Long Baseline Array images at 7.6 GHz reveal parsec-scale jet structures, in two cases with extended structure aligned with the inner regions of the kiloparsec-scale jets. Based on this alignment, the ratio of the radio core luminosity to the optical luminosity, the jet/counter-jet intensity and extension length ratios, and moderate core brightness temperatures ($lesssim10^{10}$ K), we conclude these jets are mildly relativistic ($betalesssim0.3$, $deltasim1$-$1.5$) and aligned at moderately small angles to the line of sight (10-15$^{circ}$). The derived kinematic ages of $sim10^6$-$10^7$ y are much younger than radio galaxies but comparable to other NLS1s. Our results increase the number of radio-loud NLS1s with known kiloparsec-scale extensions from seven to ten and suggest that such extended emission may be common, at least among the brightest of these sources.
Planetary nebulae expand on time scales of 10^3-10^4 yr. For nearby objects, their expansion can be detected within years to decades. The pattern of expansion probes the internal velocity field and provides clues to the nebula ejection mechanism. In the case of non-symmetric nebulae, and bipolar nebulae in particular, it can also provide information on the development of the morphology. We have measured the expansion proper motions in NGC 6302 from two epochs of HST imaging, separated by 9.43 years. This is used to determine the expansion age and the structure of the velocity field. We use HST images in the [N II] 6583{AA} filter from HST WF/PC2 and WFC3. The proper motions were obtained for a set of 200 individual tiles within 90 of the central star. The velocity field shows a characteristic linear increase of velocity with radial distance (a so-called Hubble flow). It agrees well with a previous determination by Meaburn et al. (2008), made in a lobe further from the star, which was based on a much longer time span. The pattern of proper motion vectors is mostly radial and the origin is close to the position of the central star directly detected by Szyszka et al. (2009). The results show that the lobes of NGC 6302 were ejected during a brief event 2250 pm 35yr ago. In the inner regions there is evidence for a subsequent acceleration of the gas by an additional 9.2 km/s, possibly related to the onset of ionization. The dense and massive molecular torus was ejected over 5000yr, ending about 2900yr ago. The lobes were ejected after a short interlude (the jet lag) of sim 600 yr during a brief event. The torus and lobes orig- inate from separate mass-loss events with different physical processes. The delay between the cessation of equatorial mass loss and the ejection of the lobes provides an important constraint for explaining the final mass-loss stages of the progenitor stellar system.