No Arabic abstract
Competition to bind microRNAs induces an effective positive crosstalk between their targets, therefore known as `competing endogenous RNAs or ceRNAs. While such an effect is known to play a significant role in specific conditions, estimating its strength from data and, experimentally, in physiological conditions appears to be far from simple. Here we show that the susceptibility of ceRNAs to different types of perturbations affecting their competitors (and hence their tendency to crosstalk) can be encoded in quantities as intuitive and as simple to measure as correlation functions. We confirm this scenario by extensive numerical simulations and validate it by re-analyzing PTENs crosstalk pattern from TCGA breast cancer dataset. These results clarify the links between different quantities used to estimate the intensity of ceRNA crosstalk and provide new keys to analyze transcriptional datasets and effectively probe ceRNA networks in silico.
Recent genome and transcriptome sequencing projects have unveiled a plethora of highly structured RNA molecules as central mediators of cellular function. Single molecule Forster Resonance Energy Transfer (smFRET) is a powerful tool for analyzing the temporal evolution of the global structure of individual RNA molecules, in pursuit of understanding their essential structure-dynamics-function relationships. In contrast to enzymatic and chemical footprinting, NMR spectroscopy and X-ray crystallography, smFRET yields temporally resolved, quantitative information about single molecules rather than only time and ensemble averages of entire populations. This enables unique observations of transient and rare conformations under both equilibrium and non-equilibrium conditions.
Gene expression is a noisy process and several mechanisms, both transcriptional and posttranscriptional, can stabilize protein levels in cells. Much work has focused on the role of miRNAs, showing in particular that miRNA-mediated regulation can buffer expression noise for lowly expressed genes. Here, using in silico simulations and mathematical modeling, we demonstrate that miRNAs can exert a much broader influence on protein levels by orchestrating competition-induced crosstalk between mRNAs. Most notably, we find that miRNA-mediated cross-talk (i) can stabilize protein levels across the full range of gene expression rates, and (ii) modifies the correlation pattern of co-regulated interacting proteins, changing the sign of correlations from negative to positive. The latter feature may constitute a potentially robust signature of the existence of RNA crosstalk induced by endogenous competition for miRNAs in standard cellular conditions.
Boolean networks are discrete dynamical systems for modeling regulation and signaling in living cells. We investigate a particular class of Boolean functions with inhibiting inputs exerting a veto (forced zero) on the output. We give analytical expressions for the sensitivity of these functions and provide evidence for their role in natural systems. In an intracellular signal transduction network [Helikar et al., PNAS (2008)], the functions with veto are over-represented by a factor exceeding the over-representation of threshold functions and canalyzing functions in the same system. In Boolean networks for control of the yeast cell cycle [Fangting Li et al., PNAS (2004), Davidich et al., PLoS One (2009)], none or minimal changes to the wiring diagrams are necessary to formulate their dynamics in terms of the veto functions introduced here.
An important goal of medical research is to develop methods to recover the loss of cellular function due to mutations and other defects. Many approaches based on gene therapy aim to repair the defective gene or to insert genes with compensatory function. Here, we propose an alternative, network-based strategy that aims to restore biological function by forcing the cell to either bypass the functions affected by the defective gene, or to compensate for the lost function. Focusing on the metabolism of single-cell organisms, we computationally study mutants that lack an essential enzyme, and thus are unable to grow or have a significantly reduced growth rate. We show that several of these mutants can be turned into viable organisms through additional gene deletions that restore their growth rate. In a rather counterintuitive fashion, this is achieved via additional damage to the metabolic network. Using flux balance-based approaches, we identify a number of synthetically viable gene pairs, in which the removal of one enzyme-encoding gene results in a nonviable phenotype, while the deletion of a second enzyme-encoding gene rescues the organism. The systematic network-based identification of compensatory rescue effects may open new avenues for genetic interventions.
Complex systems are often modeled as Boolean networks in attempts to capture their logical structure and reveal its dynamical consequences. Approximating the dynamics of continuous variables by discrete values and Boolean logic gates may, however, introduce dynamical possibilities that are not accessible to the original system. We show that large random networks of variables coupled through continuous transfer functions often fail to exhibit the complex dynamics of corresponding Boolean models in the disordered (chaotic) regime, even when each individual function appears to be a good candidate for Boolean idealization. A suitably modified Boolean theory explains the behavior of systems in which information does not propagate faithfully down certain chains of nodes. Model networks incorporating calculated or directly measured transfer functions reported in the literature on transcriptional regulation of genes are described by the modified theory.