Do you want to publish a course? Click here

Remote detection of rotating machinery with a portable atomic magnetometer

216   0   0.0 ( 0 )
 Added by Luca Marmugi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate remote detection of rotating machinery, using an atomic magnetometer at room temperature and in an unshielded environment. The system relies on the coupling of the AC magnetic signature of the target with the spin-polarized, precessing atomic vapor of a radio-frequency optical atomic magnetometer. The AC magnetic signatures of rotating equipment or electric motors appear as sidebands in the power spectrum of the atomic sensor, which can be tuned to avoid noisy bands that would otherwise hamper detection. A portable apparatus is implemented and experimentally tested. Proof-of-concept investigations are performed with test targets mimicking possible applications, and the operational conditions for optimum detection are determined. Our instrument provides comparable or better performance than a commercial fluxgate and allows detection of rotating machinery behind a wall. These results demonstrate the potential for ultrasensitive devices for remote industrial and usage monitoring, security, and surveillance.



rate research

Read More

We demonstrate an optically pumped $^{87}$Rb magnetometer in a microfabricated vapor cell based on a zero-field dispersive resonance generated by optical modulation of the $^{87}$Rb ground state energy levels. The magnetometer is operated in the spin-exchange relaxation-free regime where high magnetic field sensitivities can be achieved. This device can be useful in applications requiring array-based magnetometers where radio frequency magnetic fields can induce cross-talk among adjacent sensors or affect the source of the magnetic field being measured.
We report on a 2x2 array of radio-frequency atomic magnetometers in magnetic induction tomography configuration. Active detection, localization, and real-time tracking of conductive, non-magnetic targets are demonstrated in air and saline water. Penetration in different media and detection are achieved thanks to the sensitivity and tunability of the sensors, and to the active nature of magnetic induction probing. We obtained a 100% success rate for automatic detection and 93% success rate for automatic localization in air and water, up to 190 mm away from the sensors plane (100 mm underwater). We anticipate magnetic induction tomography with arrays of atomic magnetometers finding applications in civil engineering and maintenance, oil&gas industry, geological surveys, marine science, archeology, search and rescue, and security and surveillance.
We demonstrate the use of a hybrid $^{3}$He / $^{87}$Rb magnetometer to measure absolute magnetic fields in the pT range. The measurements were undertaken by probing time-dependent $^3$He magnetisation using $^{87}$Rb zero-field magnetometers. Measurements were taken to demonstrate the use of the magnetometer in cancelling residual fields within a magnetic shield. It was shown that the absolute field could be reduced to the 10 pT level by using field readings from the magnetometer. Furthermore, the hybrid magnetometer was shown to be applicable for the reduction of gradient fields by optimising the effective $^3$He $T_2$ time. This procedure represents a convenient and consistent way to provide a near zero magnetic field environment which can be potentially used as a base for generating desired magnetic field configurations for use in precision measurements.
Accurate calibration of polarization dependent optical elements is often necessary in optical experiments. A versatile polarimeter device to measure the polarization state of light is a valuable tool in these experiments. Here we report a rotating waveplate-based polarimeter capable of complete Stokes vector analysis of collimated light. Calibration of the device allows accurate measurements over a range of wavelengths, with a bandwidth of >30 nm in this implementation. A photo-interrupter trigger system supplies the phase information necessary for full determination of the Stokes vector. An Arduino microcontroller performs rapid analysis and displays the results on a liquid crystal display. The polarimeter is compact and can be placed anywhere on an optical table on a single standard post. The components to construct the device are only a fraction of the cost of commercially available devices while the accuracy and precision of the measurements are of the same order of magnitude.
121 - I. Mateos , B. Patton , E. Zhivun 2015
Noise measurements have been carried out in the LISA bandwidth (0.1 mHz to 100 mHz) to characterize an all-optical atomic magnetometer based on nonlinear magneto-optical rotation. This was done in order to assess if the technology can be used for space missions with demanding low-frequency requirements like the LISA concept. Magnetometry for low-frequency applications is usually limited by $1/f$ noise and thermal drifts, which become the dominant contributions at sub-millihertz frequencies. Magnetic field measurements with atomic magnetometers are not immune to low-frequency fluctuations and significant excess noise may arise due to external elements, such as temperature fluctuations or intrinsic noise in the electronics. In addition, low-frequency drifts in the applied magnetic field have been identified in order to distinguish their noise contribution from that of the sensor. We have found the technology suitable for LISA in terms of sensitivity, although further work must be done to characterize the low-frequency noise in a miniaturized setup suitable for space missions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا