Arrays of identical and individually addressable qubits lay the foundation for the creation of scalable quantum hardware such as quantum processors and repeaters. Silicon vacancy centers in diamond (SiV) offer excellent physical properties such as low inhomogeneous broadening, fast photon emission, and a large Debye-Waller factor, while the possibility for all-optical ultrafast manipulation and techniques to extend the spin coherence times make them very promising candidates for qubits. Here, we have developed arrays of nanopillars containing single SiV centers with high yield, and we demonstrate ultrafast all-optical complete coherent control of the state of a single SiV center. The high quality of the chemical vapor deposition (CVD) grown SiV centers provides excellent spectral stability, which allows us to coherently manipulate and quasi-resonantly read out the state of individual SiV centers on picosecond timescales using ultrafast optical pulses. This work opens new opportunities towards the creation of a scalable on-chip diamond platform for quantum information processing and scalable nanophotonics applications.