Do you want to publish a course? Click here

The SLUGGS Survey: a catalog of over 4000 globular cluster radial velocities in 27 nearby early-type galaxies

114   0   0.0 ( 0 )
 Added by Duncan Forbes
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Here we present positions and radial velocities for over 4000 globular clusters (GCs) in 27 nearby early-type galaxies from the SLUGGS survey. The SLUGGS survey is designed to be representative of elliptical and lenticular galaxies in the stellar mass range 10 $<$ log M$_{ast}$/M$_{odot}$ $<$ 11.7. The data have been obtained over many years, mostly using the very stable multi-object spectrograph DEIMOS on the Keck II 10m telescope. Radial velocities are measured using the calcium triplet lines with a velocity accuracy of $pm$ 10-15 km/s. We use phase space diagrams (i.e. velocity--position diagrams) to identify contaminants such as foreground stars and background galaxies, and to show that the contribution of GCs from neighboring galaxies is generally insignificant. Likely ultra-compact dwarfs are tabulated separately. We find that the mean velocity of the GC system is close to that of the host galaxy systemic velocity, indicating that the GC system is in overall dynamical equilibrium within the galaxy potential. We also find that the GC system velocity dispersion scales with host galaxy stellar mass in a similar manner to the Faber-Jackson relation for the stellar velocity dispersion. Publication of these GC radial velocity catalogs should enable further studies in many areas, such as GC system substructure, kinematics, and host galaxy mass measurements.

rate research

Read More

A strong correlation exists between the total mass of a globular cluster (GC) system and the virial halo mass of the host galaxy. However, the total halo mass in this correlation is a statistical measure conducted on spatial scales that are some ten times that of a typical GC system. Here we investigate the connection between GC systems and galaxys dark matter on comparable spatial scales, using dynamical masses measured on a galaxy-by-galaxy basis. Our sample consists of 17 well-studied massive (stellar mass $sim$10$^{11}$ M$_{odot}$) early-type galaxies from the SLUGGS survey. We find the strongest correlation to be that of the blue (metal-poor) GC subpopulation and the dark matter content. This correlation implies that the dark matter mass of a galaxy can be estimated to within a factor of two from careful imaging of its GC system. The ratio of the GC system mass to that of the enclosed dark matter is nearly constant. We also find a strong correlation between the fraction of blue GCs and the fraction of enclosed dark matter, so that a typical galaxy with a blue GC fraction of 60 per cent has a dark matter fraction of 86 per cent over similar spatial scales. Both halo growth and removal (via tidal stripping) may play some role in shaping this trend. In the context of the two-phase model for galaxy formation, we find galaxies with the highest fractions of accreted stars to have higher dark matter fractions for a given fraction of blue GCs.
Stellar metallicity gradients in the outer regions of galaxies are a critical tool for disentangling the contributions of in-situ and ex-situ formed stars. In the two-phase galaxy formation scenario, the initial gas collapse creates steep metallicity gradients, while the accretion of stars formed in satellites tends to flatten these gradients in the outskirts, particularly for massive galaxies. This work presents the first compilation of extended metallicity profiles over a wide range of galaxy mass. We use the DEIMOS spectrograph on the Keck telescope in multi-slit mode to obtain radial stellar metallicity profiles for 22 nearby early-type galaxies. From the calcium triplet lines in the near-infrared we measure the metallicity of the starlight up to 3 effective radii. We find a relation between the outer metallicity gradient and galaxy mass, in the sense that lower mass systems show steeper metallicity gradients than more massive galaxies. This result is consistent with a picture in which the ratio of ex-situ to in-situ formed stars is lower in less massive galaxies as a consequence of the smaller contribution by accretion. In addition, we infer a correlation between the strength of the calcium triplet feature in the near-infrared and the stellar initial mass function slope that is consistent with recent models in the literature.
Early-type (E and S0) galaxies may have assembled via a variety of different evolutionary pathways. Here we investigate these pathways by comparing the stellar kinematic properties of 24 early-type galaxies from the SLUGGS survey with the hydrodynamical simulations of Naab et al. (2014). In particular, we use the kinematics of starlight up to 4 effective radii (R$_e$) as diagnostics of galaxy inner and outer regions, and assign each galaxy to one of six Naab et al. assembly classes. The majority of our galaxies (14/24) have kinematic characteristics that indicate an assembly history dominated by gradual gas dissipation and accretion of many gas-rich minor mergers. Three galaxies, all S0s, indicate that they have experienced gas-rich major mergers in their more recent past. One additional elliptical galaxy is tentatively associated with a gas-rich merger which results in a remnant galaxy with low angular momentum. Pathways dominated by gas-poor (major or minor) mergers dominate the mass growth of six galaxies. Most SLUGGS galaxies appear to have grown in mass (and size) via the accretion of stars and gas from minor mergers, with late major mergers playing a much smaller role. We find that the fraction of accreted stars correlates with the stellar mean age and metallicity gradient, but not with the slope of the total mass density profile. We briefly mention future observational and modelling approaches that will enhance our ability to accurately reconstruct the assembly histories of individual present day galaxies.
The globular cluster (GC) specific frequency ($S_N$), defined as the number of GCs per unit galactic luminosity, represents the efficiency of GC formation (and survival) compared to field stars. Despite the naive expectation that star cluster formation should scale directly with star formation, this efficiency varies widely across galaxies. To explore this variation we measure the z-band GC specific frequency ($S_{N,z}$) for 43 early-type galaxies (ETGs) from the Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) Fornax Cluster Survey. Combined with the homogenous measurements of $S_{N,z}$ in 100 ETGs from the HST/ACS Virgo Cluster Survey from Peng et al. (2008), we investigate the dependence of $S_{N,z}$ on mass and environment over a range of galaxy properties. We find that $S_{N,z}$ behaves similarly in the two galaxy clusters, despite the clusters order-of-magnitude difference in mass density. The $S_{N,z}$ is low in intermediate-mass ETGs ($-20<M_z<-23$), and increases with galaxy luminosity. It is elevated at low masses, on average, but with a large scatter driven by galaxies in dense environments. The densest environments with the strongest tidal forces appear to strip the GC systems of low-mass galaxies. However, in low-mass galaxies that are not in strong tidal fields, denser environments correlate with enhanced GC formation efficiencies. Normalizing by inferred halo masses, the GC mass fraction, $eta=(3.36pm0.2)times10^{-5}$, is constant for ETGs with stellar masses $mathcal{M}_star lesssim 3times10^{10}M_odot$, in agreement with previous studies. The lack of correlation between the fraction of GCs and the nuclear light implies only a weak link between the infall of GCs and the formation of nuclei.
59 - S. S. Larsen 2001
We present a study of globular clusters (GCs) in 17 relatively nearby early-type galaxies, based on deep HST/WFPC2 F555W and F814W images. We compare color distributions, cluster sizes and luminosity functions with those of GCs in the Milky Way. In nearly all cases, a KMM test returns a high confidence level for the hypothesis that a sum of two Gaussians provides a better fit to the observed color distribution than a single Gaussian, although histograms of the V-I distribution are not always obviously bimodal. The blue and red peak colors both correlate with absolute host galaxy B band magnitude and central velocity dispersion (at about the 2-3 sigma level), but we see no clear correlation with host galaxy V-I or J-K color. Red GCs are generally smaller than blue GCs by about 20%. The size difference is seen at all radii and exists also in the Milky Way and Sombrero (M104) spiral galaxies. Fitting t5 functions to the luminosity functions of blue and red GC populations separately, we find that the V-band turn-over of the blue GCs is generally brighter than that of the red ones by about 0.3 mag, as expected if the two GC populations have similar ages and mass distributions but different metallicities. Brighter than M_V ~ -7.5, the luminosity functions (LFs) are well approximated by power-laws with an exponent of about -1.75. This is similar to the LF for young star clusters, suggesting that young and old globular clusters form by the same basic mechanism. We discuss scenarios for GC formation and conclude that our data appear to favor ``in-situ models in which all GCs in a galaxy formed after the main body of the proto-galaxy had assembled into a single potential well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا