No Arabic abstract
The origin and life-cycle of molecular clouds are still poorly constrained, despite their importance for understanding the evolution of the interstellar medium. We have carried out a systematic, homogeneous, spectroscopic survey of the inner Galactic plane, in order to complement the many continuum Galactic surveys available with crucial distance and gas-kinematic information. Our aim is to combine this data set with recent infrared to sub-millimetre surveys at similar angular resolutions. The SEDIGISM survey covers 78 deg^2 of the inner Galaxy (-60 deg < l < +18 deg, |b| < 0.5 deg) in the J=2-1 rotational transition of 13CO. This isotopologue of CO is less abundant than 12CO by factors up to 100. Therefore, its emission has low to moderate optical depths, and higher critical density, making it an ideal tracer of the cold, dense interstellar medium. The data have been observed with the SHFI single-pixel instrument at APEX. The observational setup covers the 13CO(2-1) and C18O(2-1) lines, plus several transitions from other molecules. The observations have been completed. Data reduction is in progress, and the final data products will be made available in the near future. Here we give a detailed description of the survey and the dedicated data reduction pipeline. Preliminary results based on a science demonstration field covering -20 deg < l < -18.5 deg are presented. Analysis of the 13CO(2-1) data in this field reveals compact clumps, diffuse clouds, and filamentary structures at a range of heliocentric distances. By combining our data with data in the (1-0) transition of CO isotopologues from the ThrUMMS survey, we are able to compute a 3D realization of the excitation temperature and optical depth in the interstellar medium. Ultimately, this survey will provide a detailed, global view of the inner Galactic interstellar medium at an unprecedented angular resolution of ~30.
The SEDIGISM (Structure, Excitation and Dynamics of the Inner Galactic Interstellar Medium) survey used the APEX telescope to map 84 deg^2 of the Galactic plane between l = -60 deg and l = +31 deg in several molecular transitions, including 13CO(2-1) and C18O(2-1), thus probing the moderately dense (~10^3 cm^-3) component of the interstellar medium. With an angular resolution of 30 and a typical 1-sigma sensitivity of 0.8-1.0 K at 0.25 km/s velocity resolution, it gives access to a wide range of structures, from individual star-forming clumps to giant molecular clouds and complexes. The coverage includes a good fraction of the first and fourth Galactic quadrants, allowing us to constrain the large scale distribution of cold molecular gas in the inner Galaxy. In this paper we provide an updated overview of the full survey and the data reduction procedures used. We also assess the quality of these data and describe the data products that are being made publicly available as part of this first data release (DR1). We present integrated maps and position-velocity maps of the molecular gas and use these to investigate the correlation between the molecular gas and the large scale structural features of the Milky Way such as the spiral arms, Galactic bar and Galactic centre. We find that approximately 60 per cent of the molecular gas is associated with the spiral arms and these appear as strong intensity peaks in the derived Galactocentric distribution. We also find strong peaks in intensity at specific longitudes that correspond to the Galactic centre and well known star forming complexes, revealing that the 13CO emission is concentrated in a small number of complexes rather than evenly distributed along spiral arms.
We use the 13CO(2-1) emission from the SEDIGISM high-resolution spectral-line survey of the inner Galaxy, to extract the molecular cloud population with a large dynamic range in spatial scales, using the SCIMES algorithm. This work compiles a cloud catalogue with a total of 10663 molecular clouds, 10300 of which we were able to assign distances and compute physical properties. We study some of the global properties of clouds using a science sample, consisting of 6664 well resolved sources and for which the distance estimates are reliable. In particular, we compare the scaling relations retrieved from SEDIGISM to those of other surveys, and we explore the properties of clouds with and without high-mass star formation. Our results suggest that there is no single global property of a cloud that determines its ability to form massive stars, although we find combined trends of increasing mass, size, surface density and velocity dispersion for the sub-sample of clouds with ongoing high-mass star formation. We then isolate the most extreme clouds in the SEDIGISM sample (i.e. clouds in the tails of the distributions) to look at their overall Galactic distribution, in search for hints of environmental effects. We find that, for most properties, the Galactic distribution of the most extreme clouds is only marginally different to that of the global cloud population. The Galactic distribution of the largest clouds, the turbulent clouds and the high-mass star-forming clouds are those that deviate most significantly from the global cloud population. We also find that the least dynamically active clouds (with low velocity dispersion or low virial parameter) are situated further afield, mostly in the least populated areas. However, we suspect that part of these trends may be affected by some observational biases, and thus require further follow up work in order to be confirmed.
C$^+$ is a critical constituent of many regions of the interstellar medium, as it can be a major reservoir of carbon and, under a wide range of conditions, the dominant gas coolant. Emission from its 158$mu$m fine structure line is used to trace the structure of photon dominated regions in the Milky Way and is often employed as a measure of the star formation rate in external galaxies. Under most conditions, the emission from the single [CII] line is proportional to the collisional excitation rate coefficient. We here used improved calculations of the deexcitation rate of [CII] by collisions with H$_2$ to calculate more accurate expressions for interstellar C$^+$ fine structure emission, its critical density, and its cooling rate. The collision rates in the new quantum calculation are $sim$ 25% larger than those previously available, and narrow the difference between rates for excitation by atomic and molecular hydrogen. This results in [CII] excitation being quasi-independent of the molecular fraction and thus dependent only on the total hydrogen particle density. A convenient expression for the cooling rate at temperatures between 20 K and 400 K, assuming an LTE H$_2$ ortho to para ration is $Lambda ({rm LTE~OPR}) = left(11.5 + 4.0,e^{-100,mathrm K/T^{rm kin}}right);e^{-91.25,mathrm K/T^{rm kin}},n ({rm C}^{+}),n({rm H}_2)times 10^{-24};{rm ergs}~{rm cm}^{-3}~{rm s}^{-1}$. The present work should allow more accurate and convenient analysis of the [CII] line emission and its cooling.
The Interstellar Medium (ISM) comprises gases at different temperatures and densities, including ionized, atomic, molecular species, and dust particles. The neutral ISM is dominated by neutral hydrogen and has ionization fractions up to 8%. The concentration of chemical elements heavier than helium (metallicity) spans orders of magnitudes in Galactic stars, because they formed at different times. Instead, the gas in the Solar vicinity is assumed to be well mixed and have Solar metallicity in traditional chemical evolution models. The ISM chemical abundances can be accurately measured with UV absorption-line spectroscopy. However, the effects of dust depletion, which removes part of the metals from the observable gaseous phase and incorporates it into solid grains, have prevented, until recently, a deeper investigation of the ISM metallicity. Here we report the dust-corrected metallicity of the neutral ISM measured towards 25 stars in our Galaxy. We find large variations in metallicity over a factor of 10 (with an average 55 +/- 7% Solar and standard deviation 0.28 dex) and including many regions of low metallicity, down to ~17% Solar and possibly below. Pristine gas falling onto the disk in the form of high-velocity clouds can cause the observed chemical inhomogeneities on scales of tens of pc. Our results suggest that this low-metallicity accreting gas does not efficiently mix into the ISM, which may help us understand metallicity deviations in nearby coeval stars.
We present a model to self-consistently describe the joint evolution of starburst galaxies and the galactic wind resulting from this evolution. We combine the population synthesis code Starburst99 with a semi-analytical model of galactic outflows and a model for the distribution and abundances of chemical elements inside the outflows. Starting with a galaxy mass, formation redshift, and adopting a particular form for the star formation rate, we describe the evolution of the stellar populations in the galaxy, the evolution of the metallicity and chemical composition of the interstellar medium (ISM), the propagation of the galactic wind, and the metal-enrichment of the intergalactic medium (IGM). In this paper, we study the properties of the model, by varying the mass of the galaxy, the star formation rate, and the efficiency of star formation. Our main results are the following: (1) For a given star formation efficiency f*, a more extended period of active star formation tends to produce a galactic wind that reaches a larger extent. If f* is sufficiently large, the energy deposited by the stars completely expels the ISM. Eventually, the ISM is being replenished by mass loss from supernovae and stellar winds. (2) For galaxies with masses above 10^11 Msun, the material ejected in the IGM always falls back onto the galaxy. Hence lower-mass galaxies are the ones responsible for enriching the IGM. (3) Stellar winds play a minor role in the dynamical evolution of the galactic wind, because their energy input is small compared to supernovae. However, they contribute significantly to the chemical composition of the galactic wind. We conclude that the history of the ISM enrichment plays a determinant role in the chemical composition and extent of the galactic wind, and therefore its ability to enrich the IGM.