Do you want to publish a course? Click here

Spectra of charmed and bottom baryons with hyperfine interaction

68   0   0.0 ( 0 )
 Added by Zhenyang Wang
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Up to now, the excited charmed and bottom baryon states are still not well studied both experimentally and theoretically. In the present paper, we predict the mass of $Omega_b^*$, the only $L = 0$ baryon state which has not been observed, to be 6069.2 MeV. The spectra of charmed and bottom baryons with the orbital angular momentum $L = 1$ are studied in two popular constituent quark models, the Goldstone boson exchange (GBE) and the one gluon exchange (OGE) hyperfine interaction models, respectively. Inserting the latest experimental data from the Review of Particle Physics, we find that in the GBE model, there exist some multiplets ($Sigma_{c(b)}$, $Xi_{c(b)}$ and $Omega_{c(b)}$) which total spins of three quarks in their lowest energy states are 3/2, but in the OGE model there is no such phenomenon. This is the most important difference between the GBE and OGE models. These results can be tested in the near future. We suggest more efforts to study the excited charmed and bottom baryons both theoretically and experimentally, not only for the abundance of baryon spectra, but also for determining which hyperfine interaction model is realized in nature.



rate research

Read More

In this work, we study the mass spectrum of the $Omega_{ccc}$ and $Omega_{bbb}$ baryons up to the $N=2$ shell within a nonrelativistic constituent quark model (NRCQM). The model parameters are adopted from the determinations by fitting the charmonium and bottomonium spectra in our previous works. The masses of the $Omega_{ccc}$ and $Omega_{bbb}$ baryon states predicted in present work reasonably agree with the results obtained with the Lattice QCD calculations. Furthermore, to provide more knowledge of the $Omega_{ccc}$ and $Omega_{bbb}$ states, we evaluate their radiative decays with the available masses and wave functions from the potential model.
We have investigated the electromagnetic decays of the antitriplet and sextet charmed baryon systems with $J^P= frac{1}{2}^+, frac{3}{2}^+$ in the framework of the heavy baryon chiral perturbation theory. We first construct the chiral Lagrangians at $O(p^2)$ and $O(p^3)$. Then we calculate the electromagnetic (EM) decay amplitudes of the charmed baryon systems up to $O(p^3)$. With the help of the quark model, we estimate the low energy constants. The numerical results of the EM decay widths show good convergence of the chiral expansion. We notice that the two neutral EM decay processes $Xi_c^0rightarrowgamma+Xi_c^0$ and ${Xi_c^*}^0rightarrowgamma+Xi_c^0$ are strongly suppressed by the SU(3) U-spin flavor symmetry. With the same formalism, we also estimate the EM decay widths of the bottomed baryons. The EM decay widths of the heavy baryons may be measured at facilities such as LHCb and JPARC. The explicit chiral structures of the heavy baryon decay amplitudes derived in this work may be useful to the possible chiral extrapolations of the future lattice simulations of these EM decay amplitudes.
The calculation of muon spectra from the decay of Lambda_c baryons was carried out on the basis of the description of recent data on charmed-baryon production in hadronic interactions. Data are described in the framework of Quark--Gluon String Model that allowes us to consider primary proton interactions of arbitrary high energy. MC code was built for charmed-baryon semileptonic decay in order to obtain the kinematical characteristics of resulting particles. It is predicted that the charge asymmetry between energy spectra of mu+ and mu- in laboratory system is clearly seen as the consequence of asymmetry between the spectra of charmed baryons and antibaryons.This extension of QGS Model can be useful to correct the calculations of muon and neutrino spectra in astrophysics.
There has been important experimental progress in the sector of heavy baryons in the past several years. We study the strong decays of the S-wave, P-wave, D-wave and radially excited charmed baryons using the $^3P_0$ model. After comparing the calcul ated decay pattern and total width with the available data, we discuss the possible internal structure and quantum numbers of those charmed baryons observed recently.
In this work, we evaluate the lifetimes of the doubly charmed baryons $Xi_{cc}^{+}$, $Xi_{cc}^{++}$ and $Omega_{cc}^{+}$. We carefully calculate the non-spectator contributions at the quark level where the Cabibbo-suppressed diagrams are also include d. The hadronic matrix elements are evaluated in the simple non-relativistic harmonic oscillator model. Our numerical results are generally consistent with that obtained by other authors who used the diquark model. However, all the theoretical predictions on the lifetimes are one order larger than the upper limit set by the recent SELEX measurement. This discrepancy would be clarified by the future experiment, if more accurate experiment still confirms the value of the SELEX collaboration, there must be some unknown mechanism to be explored.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا